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Rotational transitions in the collisions of diatomic molecules are treated by means of a rigid body 
approximation. The deviation from sphericity is assumed to be sufficiently small that it may be 
treated as a perturbation. The differential cross section is calculated for the HrHD collision in which 
the hydrogen remains in its ground state while the hydrogen deuteride goes from its ground state 
to the first excited rotational state. 

1. INTRODUCTION 

THE previous papers l
-

3 of this series have been 
concerned with the general treatment of mole

cular collisions, via quantum mechanics. A rigorous 
treatment of inelastic collisions was given, mainly 
in order to be able to take the Pauli principle into 
account. Then, the special case of diatomic mole
cules was set up in terms of a set of coupled integral 
equations, with effective exploitation of the proper
ties of the three-dimensional rotation group.4 The 
analysis was carried as far as seemed possible with
out the introduction of approximations. 

* This paper is based on a thesis [University of Wisconsin 
Naval Research Laboratory Rept. WIS-NSF-5 (1955)1 
submitted by George Gioumousis to the University of Wis
consin in partial fulfillment of the requirements of a PhD 
degree in theoretical chemistry. 

t This work was sponsored in part by a National Science 
Foundation grant. One of us (GG) held predoctoral fellow
ships sponsored by the Shell Companies Foundation and by 
the National Science Foundation . 
. t Pres~nt ~ddre8s: Shell Development Company, Emery

ville. CalifornIa. 
1 G. Gioumousis and C. F. Curtiss, J. Chem. Phys. 29, 

996 (1958). 

The idealization of molecules as rigid bodies has 
been a frequently applied simplifying assumption, 
as witness the wide and successful use of the rigid 
sphere model in the kinetic theory of gases. In 
quantum mechanics the advantage of the method 
is that instead of having to solve a differential equa
tion, one has only to fit boundary conditions, which 
generally is much simpler. 

For the collisions of diatomic molecules the 
proper model is one of rigid cylindrically symmetric 
bodies. Vibration is not to be considered. It will 
be assumed that the molecules are nearly spherical, 
so that the deviation from sphericity can be treated 
as a perturbation. As an illustrative example, the 
cross section for the l = 0 to l = 1 transition for 
hydrogen deuteride colliding with hydrogen is 
calculated. 

The work follows closely that reported in two 
previous papers/· 2 but is independent of the third3 

in this series. They will be referred to as I, II, and 
III, respectively, and equations from them as, say, 
(1-35) or (II-3.12). 

2 G. Gioumousis and C. F. Curtiss, J. Math. Phys. 2, 
96 (1961). The nomenclature for the most part follows II, 

New that is, rotations are denoted R, sa, Rb
, etc. How

ever, the difficulties with all of the symbols for the 

3 G. Gioumousis, J. Math. Phys. 2, 723 (1961). 
'E. Wigner, Group Theory (Academic Press Inc., 

York, 1959). 
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R 

FIG. 1. The coordinate system used. The molecules are "a" 
and "b," composed of atoms ai, a2, bl) and b2. The vector ro is 
from at to a2, rb is similarly defined, while r is from the 
center of mass of "a" to that of "b." The rotations R, Ro, Rb 
make r, ro, r b, respectively, parallel to the z axis, with the 
further provision that R put ro in the left half of the xz plane. 
The rotations So, Sb make ra, rb parallel to r, and are given by 
Ro = SaR and Rb = SbR. 

Wigner coefficients have led us to introduce still 
another. The Wigner S::II is impossible for the 
printer if the indices are sub- or superscripted, let 
alone both. The three-j symbol, defined by 

(
a b c) _ (_l)"-b-"Y ab 
a fJ 'Y - (2c + 1)1/2 Sca(J Oa+II+"Y.o, 

has the simplest symmetry, but has a redundant 
index that unduly complicates summation formulas. 
For this reason, in this paper we use the three-j 
symbol with the added convention that anyone of 
the three lower indices may be replaced by a dot 
which will denote the negative sum of the other two. 
We thus have 

S~:II = (2c + Ir/2( _l)-O+b-a-II(: ! ~) , 
S:~a."'I-a = (2c + 1)1/2(_1)-O+b-"Y(a b c), etc. 

a . -'Y 

For a similar reason, the Racah coefficients are 
written as six-j symbols. 

The coordinate system to be used here is identical 
to that of II. Briefly, rotations which place a mole
cular configuration into some standard configuration 
are used as coordinates. The coordinates are defined 
in Fig. 1. It should be noted that in the absence of 
vibration the intermolecular potential is a function 
only of So, S\ and r. 

The shapes of the molecules are most conveniently 
specified in terms of a" distance-of-closest-approach" 
function. Let 

(1.1) 

be the value of r at relative orientation So, Sb at 
which they just touch; that is, the smallest value of 
r for which they do not overlap. The molecular 
potential function may then be considered to be 

= (Xl 

r > p(soSb) 

r ~ p(saSb). (1.2) 

The statement that the molecules can not overlap 
means that the wave function is zero for configura
tions denoting overlapping, and then by continuity 
must be zero if the molecules just touch. Thus, if the 
wave function be y;(rRSoSb) , the boundary con
dition is 

(1.3) 

identically in R, So, and Sb. 
However, for the sake of consistency, it is desirable 

that the same boundary condition be derivable by 
use of the potential of Eq. (1.2) and the integral 
equation (II-3.1). Such a potential can only have 
meaning in terms of a limiting process. Consider for 
a moment a one-dimensional potential which has a 
large jump at the point a. Then the wave function 
has certain values to the left of a, being such that 
the integral of the product of it, the potential, and 
the Green's function has the proper value. Now if 
the height of the step of VCr) be raised, the values of 
y;(r) to the left of a must be correspondingly de
creased in order that the integral remain finite. In 
the limit that the step be of infinite height the wave 
function must be zero at the point a. This is shown 
in Fig. 2. 

Clearly the above argument is valid in more than 
one dimension. Furthermore, the potential function 
need not be a step function as long as it does ap
proach a function of the form of Eq. (1.2) in the 
limit. 

2. THE BOUNDARY CONDITION 

It is convenient at this point to introduce a more 
condensed notation. Let q denote the set of quantum 
numbers l"m"lbmb, ij the set iOiiioibiiib, and similarly 
p the set l"lbZA and p the set iOibi>... Then let m = 

ma + mb and iii = iii" + iiib, since, for example, 
it will ocasionally be convenient to sum over m and 
mO instead of mO and m b

• 

The form of the function to which the boundary 
condition is to be applied may be seen by inspection 
of Eq. (II-3.9). First consider only values of r 
larger than the maximum of the function p. It is 
evident from the form of the integral operator that 
the second term is zero, while the integral in the 
first is a constant b(pt) independent of the value 
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.,f r. Thus, the relation5.6 

",(pL; p / r) = a,,;;j(X / lcr) + b(pL; p)h(}" / lcr) (2.1) 

holds, sal>ject to the limitation on the values of r. 
However, the above function satisfies the differential 
equation for all configurations such that V = 0, 
and thus is the correct solution for all such con
figurations. 

The boundary condition of Eq. (1.3) may be 
applied to a wave function possessing sharp angular 
momentum to give 

o = 1{t(pLSf / p(SB Sb)RSa Sb) 

= 'S"' 1{t(pL; rlbl}.. / p(SB Sb» 
la~3t 

X ('2l + 1)1/2(2L + 1)112 

X (_l)ZG+Zb+ Z+ A(l" l6 1)( 1 }.. L) 
st· s+tO· 

X D(rOs / SB) D(lbOt / Sb) 

v(r)~ 

a. Shallow Step 

V(r) 

b. High Step 

c. Infinite Step 

FIG. 2. Behavior of a 
wave function near the 
region of A jump in the 
potential. 

Now let the assumption be made that the mole
cules are so nearly spherical that the deviation may 
be treated as a perturbation. Clearly, if the mole
cules were truly spherical the function p would be 
constant, so that it is valid to write 

X D(L, s + t, Sf / R), (2.2) p(SBSb) = Po + P1(SBS6) (2.6) 

where p has been written explicitly since it is 
summed over. Multiplying by D(LTlJ / R) and 
integrating by R yields 

() = :E ",(pLM; rtl}.. / p(S'Sb» 
l"lb(Aa 

X (2l + 1)1/2(2L + 1)1/2 

X (_l)/G+Zb+ z + A(l" tl )(l}" L) 
S'-T TO-T 

X D(l"Os / sa) D(t, 0, T - s / S6). (2.3) 

The equation above will be solved by a pertur
bation method. By Eq. (2.1) the expansion coeffi
dents may be written in the more explicit form 

",(pLM; p / p) = a,,;;j(X / kp) + b(P£)h(}../ kp). (2.4) 

The coefficient b(pL) is to be determined from the 
boundary condition (2.3). It should be noted that 
1/1 is not a function of M, while the variable p is to 
be understood. The boundary condition may now 
be written 

o = L [a(rlbl}", Z'ZbZX)j(X / kp(SBSb» 
p'lbn .• 

X DerOs / sa) D(t, 0, T - s / Sb). (2.5) 

• Where no confusion is likely to arise, we use k to denote the 
wave number k/aZb [defined by (2m)-1/i2kl = E - Elo - EZb) 
and Ii to denote kr.p. 

6 L. 1. Schiff, Quantum Mechanic8 (McGraw-Hill Book 
Company, Inc., New York, 1949), pp. 77-79, defines the 
spherical Bessel functions j I(X) and h I (I )(x), which we write 
j(llx) and h(llx) for typographic reasons. 

and assert that Po is the dominant term. 
In order to perform the perturbation let a param

eter E be introduced in powers of which the functions 
h(}.. I •.• ) and the coefficients b are to be expanded. 
Let 

p(S'Sb) = Po + EP1(SBSb), (2.6') 

so that E is a measure of the strength of the perturba
tion. Then, both the spherical Bessel and Hankel 
functions may be written as series in E, i.e., 

j(}.. / kp(SBSb» = j(}.. / kpo) 

+ Ekp1(S·Sb)j'(}.. / kpo) (2.7) 
and 

h(}.. / kp(sa Sb» = h(}.. / kpo) 

+ Ekpl(S·Sb)h'(}../ kpo) , (2.8) 

where the prime denotes differentiation. The validity 
of the first-order perturbation which is intended 
depends directly on the validity of cutting off the 
expansions Eqs. (2.7) and (2.8) after the second term. 

Let also the coefficient b be expanded in powers of E 

b(PL) = b(O)(PL) + Eb(l)(pL) + .. , . (2.9) 

Then, the boundary condition becomes 

o = :E {a"p[i(X / kpo) + EkpI(S'Sb)j'(X / ;CPo)] 
". 

+ WO)(pL) + Eb(l)(pL) + ... ] 
X [h(}.. / kpo) + Ekp1(S·Sb)h'(}.. I kpo)]} 

X (2l + 1)1/2(2L + 1)1I2( _l)/a+lb+ I +A 

X (lO lb 1 )(l}" L) 
s . -T TO-T 

X D(rOs IS') D(t, 0, T - s / Sb). (2.10) 
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Collecting the coefficients of the powers of E yields 
the following two equations for the perturbation up 
to the first order 

p. 

x (za t l)(l X £) 
s . T TO-T 

X D(rOs , SO) D(t, 0, T - S , Sb), 

and 

o = L {Op;,kp1(S"Sb)j(X , kpo) 
p. 

+ b(O)(P£)kp1(S"Sb)h'(X , kpo) 

+ b(l)(p£)h(X , kpo)} 

X (2l + 1)1/2(2£ + 1)1/2( _l)zG+Zo+z+x 

X (l" lb l )(l X £) 
s . -T TO-T 

(2.11) 

X D(l"Os, SO) D(t, 0, T - s, Sb). (2.12) 

The first one, Eq. (2.11), may be solved quite 
readily by using the orthogonality relations for the 
Wigner coefficients and the irreducible representa
tion coefficients, yielding the result that the term 
inside the braces must be zero, or that 

b(O)(~£) = - 0 _ j(~ I ~Po) . (2.13) 
\}I pp h(X , kpo) 

The equation for b(l)(p£) is solved in a similar 
manner. Multiplying Eq. (2.12) by D(l"'Os' I sa), 
D(lb', 0, T - S' , Sb) and then integrating with 
respect to sa Sb yields 

L b(l)W'lb'lX£)h(X ,kpo)(_l)zG'+z"+z+}. 
ZX 

x J D(l"'Os' , sa)* D(t', 0, T - S' , Sb)* 

X P1(sasb) D(i"Os , SO) 

X D(lb, 0, T - S , Sb) dSa dSb. 

Finally, multiplying by 

(2£ + 1)1I2(2l' + 1)1/2( _l)T+}.'+zG'+Zo, 

X (1 X' £ )(l:' lb' l') 
T 0 -T S '-T 

and summing over s' and T gives the result 

b (1) cza t lX£) 

(2la + 1)(2t + 1) (2X + 1) 
(811"2)2 (2£ + 1) 

X L (_l)z.+Z'+l+}.+TG+Tb+T+~ 

88 '7' 

X J D(l"Os' , S")* 

X D(t, 0, T - S' , Sb)*p1(saSb) D(iaOs' sa) 

X DW, 0, T - S , Sb) dS" dSb 

X {reX I kpo)h(X , kpo) - j(X I kPo)h'(X I kpo)} 
heX I kpo) , 

(2.14) 

where the primes on zatlX have been dropped. 
The numerator of the term inside braces has the 

value6 

-i/W/o). (2.15) 

On the other hand, the integral cannot be evaluated 
until the form of P1 (sa Sb) is known. It is convenient 
to expand P1 in a series of representation coefficients 
in a manner similar to that used previously2 for the 
potential 

P1(S"Sb) = L C(l1l2J.!2) DU10 - J.!2 , sa) 
his", 

X D(~0J.!2 , Sb), (2.16) 

where the sum does not include the c(OOO) term 
since normally any angle-independent terms would 
be included in Po. Then, the following two integrals 
appear4

: 

(2.17) 

and 

J D(tOT - S' I Sb)* 

X DU20J.!2 , Sb) D(ibOT - S , Sb) dSb 

= 8 2(l2 lb t)(l2 r t) ~(' _ ) 11"000 uS,S J.!2· J.!2 T - S • 
(2.18) 
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The final result is 

b(l)WtlXL) 

i(2r + 1)(2lb + 1)[(2l + 1)(2l + 1)]1/2(2X + I) 
ICp~h(>" !ICpo)h(X ! kpo) 

X (_I)z+x+Y+x L (_I)Z,+Z.H 
11 12 "':1"''' 

X ( l" Zb 1 )(la lb l )(l A L)(l >.. L) 
8 - fJ.2 . - T 8 . - T TO· TO· 

(2.19) 

We have thus obtained the wave function explicitly 
to first order. 

3. CROSS SECTIONS 

In the present section we use the results of the 
previous section to derive the form of the scattering 
cross sections, first for polarized beams and then 
for unpolarized beams. It will be shown that the 
zero-order contribution is simply the cross section 
for the scattering of rigid spheres with collision 
diameter Po. The higher-order contributions include 
a correction to the elastic cross section which is 
due to the asphericity, as well as the inelastic cross 
section. 

From Eq. (2.1) it may be seen that the part of 
1/t(pL; p I r) referring to the scattered wave has the 
asymptotic form 

b(pLp)r-X-I eikr /kr 

whence, by comparison with Eq. (II-4.4), it is seen 
that 

Now, since b has been written as a series in E, let f 
be also , that is 

(3.2) 

Equation (2.13) shows that a factor of opp occurs 
in the expression for to) (pLp). 

The series for the cross-section coefficients, 
Eq. (II-4.6), contains f in the form of factors 
f(pLp)f(pL'p')*. Thus, from Eq. (3.2), the coeffici
ents may be written as four terms, 0'('>, O'('i), O'(;;i), 
and 0'("), containing f(O)tO)., f(1)tO)., to)tl)·, and 
f(1)f(1)·, respectively. From Eq. (II-4.6) , and Eq. 
(2.13) the first of these, 0'('), may be written 

0'(i)(lama1bmb ! AaA4fJ.4 ! Iamatmb) 

k (21a + 1)(2Ib + 1) 
= k (2r + 1)(2Ib + 1) 

X 0(la1b, lat)(2Xa + 1)(2A4 + 1) 

X L iX-x' (_l)",+m+;;;(2A' + 1) (2A + 1) 
lXl'X' 
LL'Pa 

X (2L' + 1)(2L + 1)(~ ~ -~J(~ ~' fJ.4 ~ fJ.J 
X ( I A L )(I' X' L' )(A A' Aa) 

m . - fJ.a m· fJ.4 - fJ.a 0 0 0 

X ( A A' Aa)(A A' A4)( A A' A4) 
m - fJ.a . fJ.4 0 0 0 fJ.a - m . - fJ.4 

X j(A I kpo)j(A' ! kpo) (3.3) 
;f,2h(A J ICpo)h(X' IICpo) * . 

On examining this equation, it is seen' that the sum 
over Land L' is equal to Om;;" Then, in a similar 
fashion, the sum over I and I' is seen to give 8"..;;; •• 
The presence of the factor 8 (lama1bmb, ZOm"Zbmb) 
shows that this part of the cross section only refers 
to elastic scattering, a result which could have been 
expected since 0' (i) is a function only of the spherical 
part of the shape function. 

The sum over fJ.a may be written 

L [(2Xa + 1)(2X4 + 1)]1/2 ,.. 

X (m ~ fJ.a ~' ~:)(fJ.a ~ m A' ~~) , 

which, by use of symmetry and orthogonality, 
is seen to be equal to ox.~ •. From this result it is 
evident that the index JL4 occurs in 0'(;) only in the 
factor (-IY'. Then, by analogy to the discussion 
in Sec. 5 of II, the sum over JL4 in the cross section 
itself yields simply D(Aa I RT-1)oo. Then, when it 
is noted that 1a1b occur in O'(/) only in the wave 
number k = kCZ"lb) , it is evident that the cross 
section may be written 

O'(i)(lam"zbifi,bT I l"m"ZbmbR) 

= 8CZ"Zbm"ifi,b, l"Zbm"mb) 

X L O'(i)(k; Aa) D(Xa I RT-1)oo , (3.4) 
x. 

where 

O'(i)(IC; Aa) = k-2 L (2A + 1)(2A' + 1)(2Aa + 1) 
n' 

X (A A' Aa)2 j(A! kpo)i(A' !ICpo) . (3.5) 
00 0 h(X IICpo)h(X' I IC po) * 

The significance of this may be appreciated when it 
is noted that Eq. (3.4) is just the usual expression 
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for the cross section for the scattering of rigid spheres 
of collision diameter Po.7 

The next two terms are complex conjugates of 
each other, so that only the first, 0'(;;), need be 
considered. Since the factor to) is zero unless la = la, 
r = 1\ its presence introduces a factor of flWl\ lalb) 
in u(H). Similarly, on examining the result of substi
tuting Eq. (3.2) into Eq. (II-4.4) , one sees that 
the series4 

L (2L' + 1)(l~ A' L' )(l' A' L' ) = fl
m

;;; 

L' m . /014 - /oIa m· /014 - /oIa 

and 

L (2l' + 1)( ~aa Ib l'_)( laa Ib l'_) = flma;;;. 
I' m . -m m . -m 

lead to a factor of o(mamb, mamb). The end result 
is that 

u(ii)Uama1bmb I AaA4/o14 I ZOm"lbmb) 

( 1) ~·+1 
= I? 2 fI(l"ma1bmb, l"ma1bmb) 

Po 

x 1: (2L + 1)(2~ + 1)(2A' + 1)(2A + 1) 
IAZ,\).' • 

Lpal ~11l1-'1I'" 

x (21 + 1)(21 + 1)(2Aa + 1)(2A4 + 1)(21" + 1) 

X (2lb + 1)( -lr( ~ ~ L)( ~ A L) 
m . -/ola m· -/ola 

( la lb 1)( la Ib 1)(~ A' Aa)( ~ A' Aa) 
X -a _b -a _b 0 0 0 -m m . m m . m - /oIa • /014 

(3.6) 

and that U(iii) is its complex conjugate. Finally, 
substituting Eq. (2.19) into Eq. (II-4.4) yields 

u(it)(lamalbmb I AaA4/o14 I zam"rmb) 

= (_Iy.+m+;;; (2l
a + 1)(2t + 1)~21" + 1)(27

b + I) 
kk 

X (2L + 1)2(2L' + 1)2(21 + 1)(21' + 1)(2l + 1) 

7 L. 1. Schiff, reference 6, p. 110. 

X (2[' + 1)(2A + 1)(2A' + 1)(2~ + 1)(2~' + 1) 

X (2A4 + 1)(2Aa + 1)( ~ ~ L) 
m· -/ola 

X (l~~' L')( 1 A L )(1' A' L') 
m . - /oIa m· - /013 m· - /oIa 

( la lb l)( 1a lb 1')( za r 1)( r r l') X _0 _b _0 _b a b a b mm· mm· mm· mm· 

X (A A' A4)( A A' A4 )(~~' Aa) 
o 0 0 /oIa - m . - /014 0 0 0 

X (_ ~ ~, Aa)(ll Ia la)(l{ la 1') 
m - /oIa • JJ.4 0 0 0 0 0 0 

X (12 Ib t)(lnb t)( 11 la r)( 1~, l: za) 
o 0 0 0 0 0 - /012 S • - /012 S • 

X (12 I' lb)(l~, ,lb /)( Z· Z b l) 
/012 T - S· /012 T - S . S - /012' -T 

( 
l" 1b l' )(1' Ib 1)(1" Ib I') 

X s' - JJ.~ • - T' S T - s· s' T' - s' . 

X ( 1 A L)(l', A' L')(l ~ L)(l', ~, L') 
TO· TO· TO· TO. (3.7) 

for the final term U(i.). This term is the only one 
which describes inelastic scattering. 

The consideration of unpolarized beams does not 
change the first term, uti>, for it is independent of 
m already. However, there appears in the second 
term the series, 

( 
Ia 1b 1)( 1a lb I) . L (21 + 1) _a _ _a _ = OIT 

;;;a m . -m m . -m 

and then, on changing variables from /oIam to 
r = m - /oIa, and m, the series 

L (2A + 1)( ~ ~ L)( ~ A L) = fI~~ 
;;; mr . mr . 

and 

L (2Aa + I)(~ A' Aa)(~ A' A4) = flA'~" 
T r . /014 r . /014 

Thus, U(ii) may be written in the form 

u(ii)(Z"lb iAaA4/o141l"r) = o(Z"Z;Aa, l'lbA4) 

X (-k-~)"2'+1 L: (-ln2A + 1)(2A' + 1) 
Po n~'L 
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The sum over L may be performed explicitly 

L (2L + 1)(1 A L)2 = 1. 
L TO· 

Then, there are three indices remaining, 1, 8, T, 

which appear only in Wigner coefficients, and thus 
possibly may be summed over explicitly. The sum 
over these indices, 

on dropping factors which do not depend on l, 8, or 
T, and using the defining equation for the Racah 
coefficients,4 becomes 

However. by orthogonality,' the sums over T and 8 

are ~I./ and ~l'" respectively. The sum over 1 is 
then only 

is seen to be proportional to 

and thus is zero unless f is zero. However, if f is 
zero then 11 , 12 , and jJ.2 must be zero, so that only the 
c(OOO) term would appear in the series of Eq. (3.8). 
However, c(OOO) was specifically excluded [see 
discussion following Eq. (2.16)] from the expansion 
of p(S4Sb), so that it follows that u('il and U(Hi) 

for unpolarized beams are zero. Of course, it is 
possible that it might be more convenient to take 
the perturbation in such a way that c(OOO) is not 
zero, in which case these two terms would serve as 
correction terms to the elastic scattering cross 
section. 

The series for u(,p) for unpolarized beams may 
be found by the substitution of Eq. (2.19) into Eq. 

(11-5.8). It is convenient to change the notation 
slightly and write 

ikpo 

h(Ar1b
) = t+ 1 ~k h(A I kpo). (3.9) 

Po 

Then the result is 

u(i')(l4ZbT I rtR) 

L u(l4Zb; r1b I Aa) D(AaOO I RT-1
) , 

A. 

where 

UczaZb; rlb I Aa) = (2l4 + 1)(2lb + I) 

X ~ L (-I)/+I(2L + 1)(2L' + 1) 
k LL'H'AX''''TT' 

IlZ l I1'l:.12'/J31!3' 

X (2l + 1)(27 + 1)(2A + 1)(2A' + 1) 

X (2X + 1)(2X' + 1)(2Aa + I) 

X (7: lb l ,)(l A L)( l, A' L')(l X L) 
8 . -T TO· TO· TO· 

( IX' L')(X X' Aa)(A A' A3) 
X T' 0 . 0 0 0 0 0 0 

{
L A l VL X l} 

X L' A' hartL' X' h3 . 
(3.10) 

This is the only term in the cross section if the 
collision is inelastic, and since such are the ones of 
major interest in this work, will be the one con
sidered in the succeeding sections. 

It may be argued that the expression above is 
little simpler than the corresponding one of Eq. 
(2.7) for unpolarized beams. The number of indices 
has been reduced by three, but it is still eighteen, 
and while the length of a single term has been 
reduced by some inches, quite a few remain. How
ever, the properties of the Wigner and Racah 
coefficients are such that not all combinations of the 
indices lead to nonzero terms in the series. In fact, 
if all the indices on the left side of Eq. (3.10) are 
fairly small, the number of terms becomes reason
able. Then it is true that only A = 0, 1,2 are needed 
for the applications, and for these cases the Racah 
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functions have been tabulated. The Hankel func
tions are not easy to calculate directly, but a 
recursion relation exists which is well suited to 
machine calculation. 

There yet remains the question of the convergence 
of the series of Eq. (3.10). The first point to be 
noted is that it is an infinite series over at most the 
indices x~.'n', since the triangle inequalities for the 
Wigner coefficients restrict all of the other summa
tion indices to a finite range if l"ibzalbXaXX'XX' are 
given. This is readily checked. The convergence then 
depends on the asymptotic behavior of the h(Xzalb) 
for large X. From the known formula 8 

H!l)(z) '" (iZ)-1 r(p)(2P /z), 

it is evident that the behavior of h(Xrlb
) is domi

nated by a double factorial (2X + I)!! Since it is 
unlikely that the increase in the number of terms 
or that the growth of the Wigner coefficients in 
each term can match the rate of growth of a double 
factorial, it is reasonable that the series should 
converge. While the foregoing is not a rigorous 
proof, it contains the elements of one, and it should 
be noted that the proof of convergence can be made 
rigorous for the special case considered in Sec. 5. 

4. SELECTION RULES 

The present section is something of a digression 
from the main line of development, which leads to 
the calculation of cross sections. It contains a 
variety of qualitative results, some of which are 
general selection rules on the expansion coefficients 
of the distance-of-closest approach function, and 
some for the cases of quantum statistics and of 
homonuclear molecules. 

The Distance-of-Closest Approach Function 
p(S"Sb) 

The function p(S" Sb) must be real (and in fact 
positive) and must exhibit the symmetry of the 
molecules under consideration. These requirements 
lead to corresponding restrictions on the expansion 
coefficients C(lll2J1.2). The method of analysis is 
very similar to that employed for the parallel prob
lem of the expansion of V (rr"rb S .. Sb) in Sec. 6 of 
II,2 so that only the results will be given here. 

That the function p(S" Sb) must be real is ex
pressed by 

(4.1) 

8 G. N. Watson, A TreatUie on the Theory oJ Bessel Functions 
(Cambridge University Press, New York, 1952), Secs. 3.1 
and 8.1. We are indebted to Professor A. Erdelyi for pointing 
this out and thus rescuing us from an exceedingly cumbersome 
direct proof. 

There does not seem to be any simple way to express 
the fact that p is positive, but under the present 
approximation Po dominates the succeeding terms 
so that the problem does not arise. 

Suppose that "a" is a homonuclear molecule. 
This is expressed as 

p(R"R-I , RbR--I) = p(R"'R-I , RbR-1
) (4.2) 

(where by R'" is meant the rotation diametrically 
opposite to R"), since this means that the potential 
is unchanged if the molecule "a" is turned end for 
end. The expression of Eq. (4.2) in terms of the 
series Eq. (2.16) and use of the fact that 
D(l 0 m I R') = (-1)1 D(l 0 m I R) leads to the 
requirement that C(lll2J1.2) is zero unless II is even. 
Similarly, if "b" is homonuclear then C(lll2J1.2) is 
zero unless l2 is even. There is no restriction on J1.a 

in either case. 
If "a" and "b" are identical molecules then the 

potential must satisfy 

p(R"R-1 , RbR-I) "'i p(RbR,-I, R"R,-I) , (4.3) 

that is, it must be unchanged if R" and Rb are 
interchanged and R reversed. This leads to the 
condition 

(4.4) 

There is another set of restrictions on the C(lll2J1.2) 
which limit the number that need be included in 
the series of Eq. (3.7) or (3.10) for any particular 
collision. In each series the indices occur in factors 

(
ll za 1a)(l2 t 1b) 
000000 

so that II must have the parity of 1" - l" and la 
that of lb - Zb. Furthermore, II and l2 must satisfy 
the triangle inequalities 

(45.a) 
and 

(4.5b) 

Thus, the range of the l's is always finite, and is 
restricted to either even or odd. Furthermore, the 
index J1.2 occurs in such factors as 

so that its range is limited to 

(4.5c) 

For the case where "a" is HD and "b" is HI 
these rules require the l2 be even and that lb change 
only by multiples of two. For the collision 1" = 0, 
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Zb = 0 to l" = 1, Zb = 0 the only coefficient which 
appears in the series is c(100). 

Quantum Statistics 

The foregoing theory would be incorrect if in
distinguishable particles were being scattered, since 
the wave function for these must be symmetric 
or antisymmetric with respect to interchange of 
particles. The formal theory of the scattering of 
such particles was considered in 1\ the relevant 
result being that while for distinguishable particles 
the cross sect.ion is given [see Eqs. (1-47) and 
(I-53)] as 

q(lamazbmbT I l"maZbmbR) 

= (kif) lj(lamazbmbT ll"maZbmbR) 12 

for indistinguishable particles it is 

q(lamazbmbT ll"maZbmbR) 

= (klk) If(lamGZbmbT ll"maZbmbR) 

+ E/(l"maibmbT 1 Zbmbl"maR') 1
2

, 

where f = +1 for Bose-Einstein statistics and 
f = -1 for Fermi-Dirac. 9 

On referring to Eqs. (2.13) and (2.19), which 
contain the expression of f(ijT 1 qR) for rigid mole
cules,IO it may be seen that f(ijT I q'R') need not 
be at all related to f(ijT I qR). Thus, if a transition for 
which 

1a = 0, l" = 2, t=o 
be considered, only the values 

will enter into the series for f(ijT I qR), while on 
the other hand, only the values 

12 = 0,2,4 

will enter into f(ijT I q'R'). Since there is no reason 
to expect c(22~2) to be related to C(02~2) for all 
molecules, it is doubtful that f(ijT I qR) and 
f(ijT 1 q'R) would be related. 

On the other hand, if za = Zb and the collision is 
inelastic, then precisely the same C(lIZ2~~) occur in 
both series, as may be seen from Eq. (3.7). It is 
then at least possible that f(ijT 1 qR) and f(ijT I q'R') 

9 No confusion should arise between this E and the E 

introduced in Eq. (2.6') as the perturbation parameter. 
10 As before, q is an abbreViation for lamaZbmb, while R' 

refers to a direction diametrically opposite to that of R. 
By q' we will mean q with a and b interchanged, that is, 
lbmblama. 

may be related. Reference to Eqs. (3.7) and (3.1), 
and use of group theoretical symmetry/ shows that 
f(ijT 1 q'R') is the sum of a series whose terms are 
those of f(ijT I qR) multiplied by (_l)A. Thus, 
f(ijT I qR) + Ef(ijT I q'R') possesses a factor of 
(1 + f(-I)A), and the cross section, Eq. (3.7), a 
factor of (1 + f(-l)A)(l + f(-l)A'). Thus, X and 
X' must be both even or both odd, depending on the 
statistics. Since a factor (~~'~') occurs, Aa can only 
be even. 

The cross sections for unpolarized beams may be 
found as before, since these factors do not interfere 
with the summation over the m's. The result is that 
the cross section coefficients q(lazb; zazb I Aa) are 
as before except that a factor of 

(1 + f( -lh(l + f( -1)~') 
is to be inserted in each term of the series Eq. (3.10) 
for Aa even, and that the coefficient is zero for Aa 
odd. One result of this is that the cross section is 
the same for any angle as for the one diametrically 
opposite, a not unexpected result. 

For this case the cross section is very easy to 
calculate if the cross section assuming Boltzmann 
statistics has already been evaluated, for one simply 
takes every other term in the series. The situation is 
very similar if instead za = Zb. There is no such 
trick method in the general case, but rather one has 
to evaluate the various series independently. 

5. CALCULATION OF d(iaibj lalb I ~a) 
FOR SPECIAL CASES 

This section will be devoted to the setting up of 
the general calculational method, to the specializa
tion to a specific case, and to the numerical calcula
tion of this case for H2-HD collisions. 

Recursion Relation for the Hankel Functions 

The most convenient for the present purposes of 
the functions related to t.he Hankel functions is 

( )

1/2 

h(zzazb) = ·1+1 ~ k -ikp'H(l) (k ) 
1, 2kpo poe 1+1/2 Po, (5.1) 

which may be expressed in terms of real functions 
as follows: 

h(llazb) = Pl+1/2(kpo) + iQl+1/2(kpo) (5.2) 

where p and Q are functions defined in Jahnke
Emde.ll These functions, P Z+l /2 (X) and QZ+1/2(X), 
are polynomials in X-I. For simplicity, let them be 

11 E. Jahnke and F. Emde, Tables of Functions (Dover 
Publications, New York, 1945). 
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TABLE 1. The spherical Hankel functions. 

o 
1 
2 
3 

Al(x) 

1 
1 

1 - 3x2 

1 - 15xl 

Bl(x) 

o 
x 
3x 

6x - 15x3 

denoted by AI = A I(l/x) and BI = B I(l/x). The 
values for the lowest orders are given in Table I. 

Since WI-Ih(lrl b
)] is a multiple of a Hankel 

function, it must satisfy the same recursion rela
tion,9 which, in terms of the AI and B I, becomes 

A I +1(x) = .1. 1- 1 - (21 + l)xB ,(x) , 

B I +1(x) = B I - 1 + (21 + l)xA ,(x). 

(5.3a) 

(5.3b) 

Since Ao, AI, Bo, and Bl are known from Table I, 
this relation serves to define all succeeding AI and B. 
It is ideally suited to machine calculation. 

The Cross Section When t = ib 
= 0 

It is desired in the next section to calculate 
u(001O; X3). However, it is of interest to first find 
uWOl"O; X3)' The following factors' occur in the 
terms of Eq. (3.10): 

( It ib lb) = (l2 0 0) = o 0 0 0 00 0,.,0, 

( lnb t) = (l~ 0 0) = o 0 0 0 00 01.' ,0, 

and 

( 1~ lb lb) (l~ 0 0) 
p.~ T' - 8'· = p.~ T' - 8' • 

Clearly, only the coefficients of the form C(lI00) 
enter into the cross section. 

It is easy to see that if one molecule, say "b," is 
spherical then only coefficients of the form C(ll00) 
are nonzero, and that the cross section is of the form 

u(l"Zbl"lb; X3) = o{Plb)uWOrO; X3). (5.4) 

Thus, the particular cross section u(i"OrO : X3 ) 

of the previous paragraph, which is for a general 
shape function as given by Eq. (2.16), is rigorously 
equal to the cross section for the special shape 
function with l2 = P.2 = O. 

To return to Eq. (3.10), the remaining factors 

involving lb and Zb are 

( r t l) = (2l + 1)-1/2(_1)IH 0 _ 
8 - P.2 • -T T,' ~., 

e" ~b !J = (21 + 1)-1/2(_1)T+T OT,., 

and two more with some indices primed. The series 
then is no longer summed over 12, l~, P.2, P.~, 8, 8', l, 
and i, a gain of eight indices. Substitution of the 
above into Eq. (3.10) yields 

u(l"Ol"Oj Xa) = ~ L: (_1),°+1'+',+1" 
k LL'I.I.'H' 

'1'1'1'1" 

X (2L + 1)(2L' + 1)(2X + 1)(2X' + 1) 

X (2~ + 1)(2~' + 1)(2Xa + 1) 

X c(llOO)CmOO)* 
h(XrO)h(X' lao) * h(n"O)h(~' ZOO) * 

X (ll Z" l" )(lU" l" )(l" XL) o T - r 0 r' - T' r 0 - r 

X (Z" ~ L )(l" X' L' )(Z"~' L') 
r 0 - r r' 0 - r' r' 0 - r' 

(~ ~, X3)(X X, Xa){L X z-U L ~ Z"} 
X 0 0 0 0 0 0 L' X' Xaf\.L' ~'Xa . (5.5) 

The sum over L, L', r, and r' involves only quanti
ties arising from the group theory, and it is believed 
that it can be expressed in terms of higher-order 
invariants than the Racah functions. However, it is 
not necessary to attempt to do so, since it is simple 
to perform the summation directly for small values 
of r andZ". 

The Cross Section d(OOlO; J..a) 

The present part will be devoted to the calculation 
of the cross-section coefficients u(001O; X3 ) for 
X3 = 0, 1, 2. It should be noted that Eq. (5.5) is for 
a general shape function, that is, while the p(S" Sb) 
that appears there is averaged over orientations of 
molecule "b," this is not an approximation, but 
arises from the theory. In a similar fashion, it will 
be seen that in the cross section here desired only the 
term c(100) of the shape function will appear. 
Thus, on the one hand it is possible to calculate the 
cross section for this collision with only very limited 
knowledge of the shape function, while on the other 
hand knowledge of the cross section by no means 
serves to determine the shape function. 

The following factors occur in the series of Eq. 
(5.5) on substituting Z" = 0 and r = 1: 
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( lI1° l") = (_I)h+l(ll 1 0) = _(3)-1/2 0 0 
07-7 0 -77 l,.IO.T 

( 1· XL) (X L 0) 
70-7 = 70-7 

and 

{L X ZO} {L XO} 
L' X' Xa = L' X' XS 

= (2L + 1)-1/2(2L' + 1)-1/2 OL.A h,,A" 

Substitution into Eq. (5.5) yields the result 

0"(0010; Aa) = IC(I~~o~ klo 

[ " n(n + 1) {H( + )-1 X ~ (2n + 1) nn - 1 n In 

+ H(n + Innn - I)-I} 

" n(n + 1) {He )-1 + ~ (2n + 1) n - In nn + 1 

+ H(nn + 1 n - In)-I} 

+ ~ (2n ~nI~2~) + 3) {H(n + Innn + 1)-1 

+ H(nn + 1 n + In)-I). (5.10) 

In a similar fashion the third coefficient may be 
considered as three series 

(0010' 2) = Ic(100)12 klO [45 " n(n + 1)(n + 2) 
0", koo ~ (2n + I)(2n + 3) 

X {H(n - In n + In + 2)-1 

X L: Fx.(LXL'X')H(LXL'X'f l , 
LL'XX' 

(5.6) + H(n + 1 n + 2 n - In)-1 

+ H(nn - 1 n + 2 n + 1)-1 
where 

Fx.(LXL'X') = (-I)x'(3)(2L + 1)(2L' + 1)(2A + 1) 

( L A 1)(L' A' 1) X (2X' + 1)(2Aa + 1) 0 0 0 0 0 0 

(L L' Xa)(X X' Xa){L XI} 
X 0 0 0 0 0 0 L' X' Xs I 

(5.7) 

and 

H(LAL'A') = h(>'10)h(X'IO) *h(LOO)h(L'OO) * . (5.8) 

The further reduction of the series is a IItraight
forward but very tedious process, so that only the 
results will be given here. One case, that of the 
calculation of 0"(0010; 1), which serves to illustrate 
the methods to be used, is examined in detail in the 
Appendix. The first coefficient reduces to two 
infinite series12 

0"(0010; 0) 

_ Ic(IOO)12 k10 [L: n + 1 
- koo .. H(n + In n + In) 

+ ~ H(nn + ~ nn + I)J· (5.9) 

The second coefficient is conveniently divided into 
three series 

0"(0010; 1) = Ic(100) 12 klO 
koo 

12 In all cases the summation index ranges over all non
negative integers for which the summand is defined. 

+ H(n + 2 n + 1 nn - 1) -1 } 

+ 30 L: n(n + 1) (n + 2) 
n (2n + 1)(2n + 3) 

X {H(nn + 1 nn + 1)-1 

+ H(n + Inn + In)-I} 

" n(n + 1) 
+ 90 ~ (2n - 1)(2n + 1)(2n + 3) 

X {H(nn + 1 nn - 1)-1 

+ H(nn - 1 nn + 1)-1 

+ H(n - Inn + In)-1 

+ H(nn - 1 nn + I)-I} J. (5.11) 

It should be noted that each pair of braces contains 
along with a product H (LXL'X') its complex con
jugate H(L'X'LX) , so the coefficients themselves 
are real, as they should be. 

H2-HD Collisions 

While the calculation of the cross-section co
efficients in terms of c(I00) and Po is exact and 
general, values of the parameters must be chosen 
in order to go on to numerical calculation. For these 
preliminary calculations the pair molecular hydro
gen-hydrogen deuteride was chosen. Hydrogen, 
molecule "a," is taken to be spherical with di
ameter 2.93 X 10-8 cm, and interatomic distance 
0.749 X 10-8 cm. Then hydrogen deuteride, mole-
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FIG. 3. Geometry of H2 and HD (distances are in units of 
10-8 em). 

cule "b," is exactly the same except that the center 
of mass is displaced from the center of the sphere 
by an amount which may be calculated to be 
0.125 X 10-8 cm, as in Fig. 3. 

The first two coefficients of the distance of closest 
approach function were estimated in the following 
manner. First Po was taken to be 

Po = 2.93 X 10-8 cm. (5.12) 

Then c(100) was determined by fitting the function 
at the orientations where it takes on its maximum 
and its minimum value, to give 

c(100) = 0.125 X 10-8 cm. 

The function was thus taken to be 

p(saSb) = 2.93 X 10-8 

+ 0.125 X 10-8 D(l00 I sa). 

(5.13) 

(5.14) 

The rotational energy of hydrogen deuteride was 
taken to be l(l + 1)63.7k, where k is the Boltzmann 
constant. Then if Tok be the incoming energy in 
relative coordinates and Tlk the outgoing, they are 
related by 

To = Tl + 2·63.7 

since we taking the final state to be the l = 1 state. 
The calculation of the cross section coefficients 

was performed on the University of Wisconsin 
Numerical Analysis Laboratory's CPC-II, a digital 
machine. The calculation was so programmed that 
the functions hOIZCZb) and h(xzazb) were calculated by 
the recursion relation of Eq. (5.3), and the values 
X, X', L, L' kept in storage at each stage in the 

TABLE II. Cross section for the HD-H2 collision. 

To Tl 411'u(OOI0; 0)'1016 u(001O; 1)'1016 u(0010; 2)'1011 

140 12.5 
170 42.5 
300 172.5 
800 672.5 

0.169 
0.679 
3.091 

11.519 

0.148 
0.087 
0.292 
0.941 

0.244 
1.112 
5.428 

21.972 

calculation. Then the product of four spherical 
Hankel functions was formed, its reciprocal taken, 
and it was multiplied by the factor F.,.,.(LXL'X'). 
The terms so obtained were caused to print out 
and were later summed manually, because of the 
machine's limited storage capacity. 

The results of the calculation are given in Fig. 4 
and Table II as a function of the initial relative 
energy Tok. The cross sections are given in units of 
10-16 cm2

, or square angstroms. The total transition 
cross section is the integral over all angles of the 
differential cross section, thus 411'0'(0010; 0). The 
positive 0'(0010; 1) indicates more intense forward 
scattering than back, while the positive 0'(0010: 2) 
increases the intensity fore and aft and decreases 
it to the sides. 

12 

FIG. 4. The total colli
sion cross section for the 
(0010) transition of hydrogen 
deuteride and molecular 
hydrogen. 

It is interesting to compare the value of the 
transition cross section calculated above with the 
geometric cross section 

treating the bodies as spheres. The transition cross 
section is zero below the threshold, while the elastic 
scattering cross section varies from the above value 
at high energies to four times that at nearly zero 
energy. Assuming no other transitions occur, the 
ratio of the transition cross sections to the total 
cross section is the fraction of the numbers of 
collisions which result in a transition. These ratios 
(neglecting other transitions) are approximately one 
in one hundred, one in forty, one in ten, and ~ne in 
three in order of increasing energy. 

6. DISCUSSION 

There are three approximations in the foregoing 
work. The first is the rigid body model itself, the 
second, the first-order perturbation in the deviation 
from sphericity, and the third the truncation of the 
infinite series of Eq. (3.10). The last is a negligibJe 
source of error, since the series converges very 
rapidly. One may hope that the first approximation 



                                                                                                                                    

MOLECULAR COLLISIONS. IV 1071 

is not unreasonable, since the body of experience 
with the rigid sphere model has shown it to be 
extremely valuable for preliminary, order-of-magni
tude calculations. On the other hand the perturba
tion is of an unfamiliar sort, on the boundary con
dition rather than on some parameter in the po
tential, so that little of the previous experience with 
perturbation theory is applicable. 

It was our hope, when this work was begun, to 
relate the results to experiment by applying the 
cross sections to the calculation of the transport 
properties of gases under conditions such that in
elastic collisions are a significant fraction of the 
total. Snider13 gives a good set of references to the 
theory of such transport properties. Unfortunately, 
it has not yet been possible to carry the calculations 
through to that stage, and further Snider has shown 
that in addition to the cross sections, which are 
essentially absolute squares of the scattering matrix, 
there are also needed products of nearby elements. 
The relation to experiment may be simpler in the 
study of NMR relaxation in gases. The t:.l = 0, 
t:.m ~ 0 cross sections for Hz-Hz collisions are being 
calculated at the present time for comparison with 
Bloom's14 experimental measurements using NMR 
relaxation. 

Finally, there is always the hope that a direct 
measurement with molecular beams would be possi
ble. For molecules with as widely spaced rotational 
levels as in H2 and HD, there is a great difference in 
velocity between elastically and inelastically scat
tered molecules. Thus, even a crude velocity selector 
could differentiate between molecules scattered into 
the various rotational states. 
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APPENDIX. ALGEBRAIC REDUCTION OF THE 
SERIES FOR d(OOI0; 1) 

The algebraic reductions involved in the calcula
tion of the cross-section coefficient 0"(0010; 1) will 
here be carried out in full as an illustration of pro
cedures which may be used in general. The co
efficient is given by Eq. (5.6) as a series over four 
indices. However, the ranges of the indices are 
such that effectively one has several series over one 

13 R. F. Snider, J. Chern. Phys. 32, 1051 (1960). 
14 M. Bloom, Physic a 23, 237 (1957). 

TABLE III. Allowed values of the indices in Fl(LAL'A'). 

L A L' A' 

i n n + 1 n+1 n 
ii n n - 1 n+1 n 

iii n n+1 n + 1 n+2 
iv n n+l n - 1 n 
v n n - 1 n-l n 

vi n n - 1 n - 1 n - 2 

index. Then for each series the general term, which is 
expressed in terms of Racah and Wigner coefficients, 
may be calculated by use of the existing tables. 15 

From Eqs. (5.6) and (5.7) it may be seen that 

0'(0010; 1) = Ic(IOO) 12 k10 L F1(LAL'A') (AI) 
9koo LL'l\l\' H(LXL'X') 

where 

F1(LAL'A') = 9(2L + 1)(2L' + 1)(2A + 1) 

X (2A' + l)(L A 1)(L' A' 1) 
000 000 

X (~ t' ~)(~ ~ ~){f, :' ~}. (A2) 

Not all values of the indices are allowed, since the 
Wigner coefficients above are zero unless each of 
the following relations holds: 

L - A = ±1, 

L' - A' = ±1, 

L - L' = ±1, 

A - A' = ±1. 

Table III lists the values the other indices can take 
if L is given the value n. 

The coefficients Fl (LAL'A') are invariant under 
certain permutations of their indices. The use of the 
symmetries of the Racah functions leads to the 
result that 

FI (LAL'A') = F I (ALA'£') 

= F I (L'A'LA) 

= F1(A'L'XL). 
Then the relation 

F1(nn - 1 n - In) = F1(n - Innn - 1) 

shows that case (vi) in Table III may be expressed 
in terms of case (ii). Similarly from 

F1(nn + 1 n + 1 n + 2) = F I (n + 1 nn + 2 n + 1), 

F 1(nn + In - In) = F 1(nn - In + In), 
16 L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Revs. 

Modern Phys. 24, 249 (1952). 
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and 

F 1(nn - 1 n - 1 n - 2) = F 1(n - 1 n - 2nn - 1) 

cases (iii), (iv), and (v) may be expressed in terms 
of case (i). The cross section coefficient may then 
be written in the form 

0'(0010; 1) = Ie (1 00) 12 k10 1: {Fl(nn + 1 n + In) 
9koo .. 

x [H(nn + 1 n + In)-1 + H(n + In nn + 1)-1] 

+ F1(nn - 1 n + In)[H(nn - 1 n + In)-l 

+ H(n - Innn + 1)-1 + H(nn + 1 n - In)-l 

+ H(n + In nn - I)-I]} (A3) 

if n is replaced by n - I in case (iii) and by n + 1 
in cases (v) and (vi). 

Then only two coefficients, F 1 (nn + In + In) 
and F1 (nn - In + In) need be calculated. For the 
first coefficient, one notes that6 

and 

{ 
n n + II} 1 

n + 1 n 1 = (n + 1)(2n + 1)(2n + 3) 
(A5) 

so that 

9(n + 1) 
F 1(nn + 1 n + In) = (2n + I)(2n + 3) (A6) 

Similarly, for the second coefficient one needs in 
addition to Eq. (A4) the following: 

(
n n - 11)2 n 
o 0 0 = (2n - 1)(2n + 1) 

(A7) 

and 

{ 
n n - II} 1 

n+I I I =2n+I 
(A8) 

to show that 

n(n + 1) 
F 1(nn - 1 n + In) = 9 (2n + 1)' (A9) 

(no n + 1 1)2 n + 1 
o 0 = (2n + 1)(2n + 3) 

(A4) A substitution of these two results into (A3) yields 
Eq. (5.10). 
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Quantization of Fields with Infinite-Dimensional Invariance Groups. 
III. Generalized Schwinger-Feynman Theory* 

BRYCE s. DEWrrr 
Institute of Field Phyms, Departrrumt of Physic8, University of North Carolina, Chapel Hill, 

North Carolina 
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The formal methods of Schwinger and Feynman are applied to nonlinear field theories having 
elementary vertex functions of arbitrarily high order. In the first half of the paper, familiar theorems 
are rederived by noncanonical methods. Emphasis is given to purely formal aspects of the theory which 
may be expected to survive generalization to situations in which standard asymptotic conditions are 
inapplicable. Since the context in which the field nonlinearities are assumed to appear is that of a 
non-A~elian. infinite-dimensional invariance group, detailed attention is given to the question of a 
group mvanant measure for the Feynman functional integral. It is shown that the physically im
portant part of the measure is not determined by the group. 

The second half of the paper is devoted to the theory of the propagators and correlation functions 
which characterize the system when invariant variables are introduced. The existence of a c-number 
action functional r which contains a complete description of all quantum processes is proved. The 
second variational derivatives of this functional constitute the wave operator for the one-particle 
propagators (including all radiative corrections), and its higher derivatives are the renormalized vertex 
fun~tio~. A. descriI?tio~ of ~he renormalization process is easily carried out in terms of r. Finally, 
the lmplicatlOns which lts eXlBtence has for quantum gravidynamicB are discussed. Because it leads to 
nonlocal covariant equations for a complex metric tensor the way is open to transmutations of topology 
at the quantum level. 

INTRODUCTION 

CONTINUING a series of investigationsl on the 
special problems which arise in the attempt 

to quantize fields possessing infinite-dimensional 
invariance groups, we here leave the confines of 
the "quasi-classical approximation" to which we 
previously limited ourselves and confront the 
quantization problem proper. One of the chief 
troublemaking situations which immediately pre
sents itself is the strong nonlinearity of the dy
namical equations which are encountered when the 
invariance group is non-Abelian. Indeed, in the 
particularly interesting case of quantum gravi
dynamics, elementary vertex functions of arbitrarily 
high order occur. A major purpose of the present 
paper is to show that in spite of its formidable 
appearance (and provided no unexpected difficulties 
arise later in the detailed execution of the re
normalization program) this situation can be 
smoothly incorporated into appropriate generaliza
tions of standard formal procedures. 

It is necessary to point out, however, that our 
derivations will not be entirely deductive. We do 
not start with a set of postulates from which every-

* This research was supported in part by the Department 
of the Na~, Office of Naval Research, under contract 
Nonr-855(07) and in part by the Air Force Office of Scientific 
Research under contract AFOSR 61-72. 

1 B. S. DeWitt, J. Math. Phys. 2,151 (1961); 3,625 (1962). 
'1;hese two papers will be referred to as (I) and (II), respec
tively. 

thing else follows and which guarantee in advance 
that all difficulties will automatically resolve them
selves in some suitable fashion. Rather, we proceed 
somewhat in the spirit of the transition which led 
from the old quantum theory to modem quantum 
mechanics. The "theory" which begins to emerge 
here has a certain inevitability and inner formal 
logic about it to which we give full rein. 

Much of the material contained in the sections 
to follow will be familiar to specialists. Its restate
ment here serves two purposes. First, in order to 
achieve the greatest possible generality we continue 
our total boycott of the canonical formalism, and 
therefore it is useful to show how known theorems 
follow from a definition of commutators which is 
based solely on the uncertainty principle and the 
theory of measurement.2 Secondly, the broadened 
context in which the derivations are carried out 
serves to illumine certain facets of familiar results 
which do not usually suggest themselves. Although 
little explicit mention is made of the metric tensor 
in this paper, the chief new element of context we 
have in mind is the admission of geometry as an 
object of quantization, which will ultimately force 
a generalization of conventional asymptotic condi
tions so as to take into account the possibility of 
space-time itself having unusual topology either 
macroscopically or microscopically. The very gen-

2 B. S. DeWitt, J. Math. Phys. 3, 619 (1962). 

1073 
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erality of the abstract formalism employed here 
not only suggests alternative characterizations of 
boundary conditions for local theories but possibly 
provides a reasonable framework for the quantiza
tion of nonlocal theories as well. The only thing 
definitely required of the dynamical systems under 
consideration is that they be describable by means 
of action functionals S. 

In addition to generalizing familiar material, we 
also obtain some new results. Chief among these is 
the proof of the existence of a complex nonlocal 
c-number action functional r which contains a 
complete description of all quantum processes. 
Loosely speaking, r is to the quantum theory 
what S is to the classical theory, and its introduction 
constitutes a complete transition from conventional 
quantum mechanics to an independent quantum 
theory of fields. This is not to suggest that alter
native transitions may not be possible or even 
desirable, for the present formalism focuses on the 
fields rather than on the Hilbert space and hence 
requires the usual infinite renormalizations. Un
fortunately, dispersion theoretical techniques are 
not immediately available here; the usual postulates 
(locality, causality, Lorentz invariance) on which 
they are based break down in the face of a quantized 
metric tensor. On the other hand, recognition of the 
existence of the functional r simplifies the discussion 
of the renormalization process and, in the case of 
quantum gravidynamics, has far reaching impli
cations which will be mentioned at the end of the 
paper. 

In Sec. I the Schwinger variational principle for 
transition amplitudes is derived from the gen
eralized Peierls theory of commutators,1-3 and T 
functionals are defined by the familiar device of 
varying external sources. In Sec. 2 the method of 
functional Fourier transforms is used to introduce 
the Feynman functional integral. Because of its 
relevance to questions of group invariance, unitarity, 
and factor ordering, attention is given in Sec. 3 
to the problem of the "measure" which is to be 
associated with the functional volume element. 
The most important conclusion reached is that al
though group invariance is easily achieved the 
physically relevant part of the measure is not de
termined by the group. In Sec. 4 the basic theory 
of propagators and correlation functions, and their 
relation to T functionals, is outlined. The existence 
of the functional r is proved in Sec. 5 and its re
lation to the correlation functions is established. 

8 R. E. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952). 

The self-energy operator is introduced and the re
normalization process is described. Section 6 con
cludes with a discussion of the possibilities which 
the existence of the functional r opens up in gravita
tion theory for generalizations to non-Euclidean 
topology. 

The notation is that of (II) with two important 
exceptions: (1 ) We use boldface type to distinguish 
quantum observables from their classical a-number 
counterparts, lightface being reserved for the latter. 
(2) The symbols Gii

, Gij
, etc. now refer to propa

gators with Feynman boundary conditions and not 
to the propagation functions appearing in com
mutators. 

1. SCHWINGER VARIATIONAL PRINCIPLE 

Consider two observables A and B which are 
such that the local dynamical variables out of 
which A is constructed are taken at space-time 
points all of which lie to the future of the points 
at which the variables making up B are taken.· 
This condition will be expressed symbolically in 
the form 

A> B or B < A, (1.1) 

which may be read "A lie8 to the future of B" or 
"B lie8 to the pa8t of A." As operators, A and B 
are assumed to be Hermitian and group invariant, 
and we introduce their eigenvectors IA/), IB'), 
respectively, ignoring for simplicity any additional 
labels needed for complete characterization of the 
latter. We then ask how the amplitude (A' I B') 
changes under an infinitesimal change oS in the 
action, which satisfies the condition 

A> oS> B. (1.2) 

The change in the amplitude arises from changes 
in the observables A and B themselves, which are 
produced by the alteration in the dynamical system 
which oS describes. The precise nature of these 
changes depends on the boundary conditions 
adopted.5 The corresponding change in the ampli
tude, however, is independent of boundary con
ditions. We shall show this for the particular cases 

4 We thus extend the usual statement of Schwinger's 
~rinciple to include quantities having semi-infinite nonlocality. 
We emphasize here again, as in (I), that the concepts of 
"past" and "future" continue to be valid in quantum gravi
dynamics, provided that (a) the permissible eigenvalues of the 
operator metric all have normal signature and (b) only 
invariants are admitted as observables so that their relative 
orientation may be specified intrinsically and not in terms of 
coordinates :r; which are only labels. 

6 The dependence of the observables A and B on the 
dynamical variables of the s;r!tem is here assumed to have an 
explicit functional form which remains unaltered under the 
variation. 
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of retarded and advanced boundary conditions, 
from which it will follow that the independence 
holds in general. 

In the case of retarded boundary conditions A 
and B suffer the changes 

~A = rA = D8SA = (~S, A) = -i[~S, A], (1.3) 

~B = 0, (1.4) 

in which use has been made of the notation of 
reference 3 and the fact that 

(1.5) 

and in which the customary relation between Poisson 
bracket and commutator has been introduced. The 
change (1.3) corresponds to the unitary trans
formation 

A + ~A = UAU- 1
, U = 1 - i ~S. (1.6) 

Hence under retarded boundary conditions the eigen
vectors \A'), \B') suffer the changes 

~ IA') = -i ~S \A'), 

~ \B') = 0, 

whence it follows that 

(1.7) 

(1.8) 

~(A' IB') = i(A'1 ~S IB'). (1.9) 

With advanced boundary conditions, on the other 
hand, we have 

~A = 0, (1.10) 

in which use has been made of the reciprocity 
theorem (II, 3.14) and the fact that 

D6SB = 0. 

From Eqs. (1.10) and (1.11) it follows that 

~ \A') = 0, 

~ \B') = i ~S IB'), 

(1.13) 

(1.14) 

which leads again to (1.9). Boundary conditions 
which differ from either retarded or advanced may 
be obtained by varying the original operator solu
tion of the dynamical equations of the unaltered 
system. But such an additional variation, which 
merely transforms one solution into another, is 
generated by a canonical (i.e., unitary) transforma
tion which affects both IA') and IB') equally and 
hence leaves Eq. (1.9) unchanged. We note also 
that ~(A' \ B') = ° whenever ~S lies outside the 
time interval bracketed by A and B. 

Let us now for the moment restrict our attention 
to the case of systems possessing no infinite di
mensional invariance groups so that the Hermitian 
dynamical variables cj>', tlr i themselves are well
defined operators satisfying definite (anti-) com
mutation relations. In this case it is a convenience 
to take the total action in the form 

(1.15) 

and to consider variations in the J i , J i • The latter 
quantities, which play the role of external sources, 
constitute a set of adjustable parameters which 
serve to test the linear response of the system. 
They are to be regarded as "quasi-classical" quanti
ties (or c numbers), the J i being real functions of 
the commuting type and the J I imaginary functions 
of the anticommuting type. 

Applying the Schwinger variational principle to 
the action (1.15) we get 

(~/i OJi)(oo 1-00) = (00 \cj>il -00), 

(~/i OJ1)(00 1-00) = (00 Itlri
\ -00), 

(1.16) 

(1.17) 

where 1- 00) is any eigenvector of any dynamical 
quantity which lies in the remote past and \ 00 ) 
is any eigenvector of any dynamical quantity which 
lies in the remote future. The functional derivatives 
with respect to the sources are taken at space-time 
points corresponding to finite times and are to be 
understood as left derivatives, in contradistinction 
to functional derivatives with respect to the dy
namical variables which are always taken as right 
derivatives. If we now rewrite the right-hand sides 
of Eqs. (1.16): 

(00 Icj>' I - (Xl) = L (00 I cj>")cj>i'(cj>i, I - (Xl), (1.18) 

where the summation is over the eigenvectors 
W'), W'), respectively, of complete sets of com
muting and anti commuting operators6 of which the 
cj>' and tlrl are, respectively, members (additional 
labels corresponding to the other members being 
omitted for brevity), we obtain, upon again dif
ferentiating with respect to the sources and taking 
note of the occurrence of anticommuting factors 
[cf. (II, 1.lO)r 

6 J. Schwinger, Ph:ys. Rev. 92, 1283 (1953). 
7 The use of Schwmger's extension of the number system 

(reference 6) here implies that the "eigenvalues" tf!i as well 
as structures like ( 00 I tl!i I - 00) are "e numbers" of the 
anticommuting type. On the other hand, matrix elements of 
observables (even degree in the tf!'s) and actual probabilities 
(squares of absolute values) are e numbers of the commuting 
type. 
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~ ~ 
i ~J; i U, (co I - co) = (co IT(4/cp')I - co), (1.20) 

~ ~ 
i U j i U, (co I-co) = (co 11'(1/1jcp')I-co), (1.21) 

~ ~ 
i oJ

j 
i U

1 
(co I - co) = (co IT(1/1

j
1ft i ) I - co), (1.22) 

where 

TWcp') == 8(j, i)cpicp' + 8(i, J}cp'cpi, 

T(1fticp') == 8(j, t}1fticp' + 8(i, j)cp'1/1i , 

T(1/1i1/1i) == 8(j, i)1ftlf - 8(i, j)1/1I1/1i . 

(1.23) 

(1.24) 

(1.25) 

More generally, by repeated functional differentia
tion with respect to the external sources we obtain 
the amplitude, between the states 1- co> and I co ), 
of a product of cp's and 1/1's arranged from right to 
left in chronological order and taken with a plus 
sign or a minus sign depending on whether the 
chronological order of the boldface indices is an 
even or odd permutation of the order in which the 
corresponding functional differentiations were per
formed. 

Strictly speaking the chronological ordering opera
tion is defined above only when the times associated 
with the various indices are all quite distinct. When 
some of the times are equal the ohronologioal ordering 
operation wiU be defined by the funotional differentia
tion prooess itself-a process which will be given 
definite formal meaning by the developments of 
the following sections. The very generality of these 
developments, furthermore, will suggest that ana
logs of the chronological ordering operation may in 
this way be defined for nonlocal and even acausal 
theories. 

The results of the functional differentiation proc
ess will be called l' functionals. It will be convenient 
to employ the abbreviation 

TH .. ·kl"· == T(cp 'cp; ... 1/1 i 1/11 ••• ), (1.26) 

(co IT';'''kl'''1 ) - ~ ~ - co = i U, i U; ... 

o 0 X -- ... (co I-co) 
i Uk i U l • 

(1.27) 

It is evident that each lightfaced index on a l' 
functional commutes with all other indices, while 
the boldface indices anticommute among themselves. 

2. FEYNMAN INTEGRALS 

In the statement of Schwinger's variational prin
ciple (1.9) no indication was given of how the 

quantum operator ~S is to be constructed from the 
corresponding classical quantity ~S. That is, no 
procedure was given for handling the factor ordering 
ambiguity. We now suggest a tentative prescription 
for resolving this ambiguity. We first note that by 
a simple translation of the dynamical variables 
(viz., cJ>' --+ c/J' + c/J~, I/I i --+ I/I i + I/I~) any solution 
of the classical equations S" = 0, S ,I = 0 may 
be chosen as the zero point. Any observable A may 
then be expanded about this solution in a functional 
power series of the form 

'" 1 
A[c/J, 1/1] = m~o m! (2n)! 

X A?i ..... l.'m ... '.c/J'· •.. c/J'-I/tJ. ... I/tl •• , (2.1) 

which has a certain domain of convergence and is 
therefore formally summable. The expansion of the 
action in particular begins with quadratic terms8

: 

S = !S?;,c/J'c/J; + lS?k;;c/J'c/J;c/Jk + ... 
+ !S?lil/tll/tl + !S?jlkc/Jkl/lil/tl + 

(2.2) 

Equation (1.9) will now be rewritten in the un
ambiguous form 

~(A' I B') = i(A' 11'( oS) I B') (2.3) 

where the T symbol is used to indicate that ~S is 
first to be expanded and then chronologically 
ordered, term by term. Thus, for an arbitrary ob
servable A, 

'" 1 
T(A) == T(A [cp , 1ft]) == m~o m! (2n)! 

The remainder of this section will be devoted to the 
justification of (2.3) in the case of systems possessing 
no infinite-dimensional invariance groups. Indeed, 
the l' functionals involved have so far been defined 
only in this case. Consideration of the general case 
will be postponed to the following sections. 

The ultimate basis for the appearance of the l' 
symbol in Eq. (2.3) is the assumption that in the 
quantum theory the operator dynamical equations 
are themselves to be written in the chronologically 

8 Linear terms are absent since <1>' = O,.pl = 0 is a solution 
of the dynamical equations, and constant terms are irrelevant. 
The superscript 0 is used in Eqs. (2.1), (2.2), and elsewhere to 
indicate that the quantity in question (e.g., expansion 
coefficient) is to be evaluated at the zero point. 
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ordered forms 

T(S.,[cp, tkJ) = -J" 

T(S.I[CP, tk]) = -JI. 

(2.5) 

(2.6) 

(External sources have here been included for 
presently obvious reasons.) A difficulty which im
mediately presents itself, however, is the fact that 
a T functional is not generally Hermitian or anti
Hermitian even when the operators out of which it 
is composed are all Hermitian. In order to avoid 
later inconsistencies (e.g., violation of unitarity) we 
must therefore in some cases assume that the 
"classical" functional S itself has an imaginary part, 
so that the left-hand sides of Eqs. (2.5) and (2.6), 
like the right-hand sides, will be Hermitian and 
anti-Hermitian, respectively. It must be emphasized 
that this is not to be regarded as a defect of the 
theory. According to the point of view adopted here 
the classical theory is only a guide; the requirements 
of the quantum theory supersede all other con
siderations. 

We now take the matrix elements of Eqs. (2.5) 
and (2.6) between the states 1- (0) and 1 CD) and 
make use of (1.27), getting 

S.i[l5/i MJ(CD 1- (0) = -J,(CD I - CD), (2.7) 

S.I[I5/i MJ(oo 1- (0) = -JI(oo I - CD), (2.8) 

in which the functional differential operators on the 
left are obtained by expanding S" and S ,I and 
replacing the ¢' and 1/11 in these expansions respec
tively by l5/iM, and l5/iM I • In order to solve Eqs. 
(2.7) and (2.8) for the amplitude < CX) I - CX) as a 
functional of the J" J I we introduce its functional 
Fourier transform F[¢, 1/1] and writeU 

(CX) I -CX) = J F[¢, I/IJ 

X exp {i(J,¢' + JII/II)} 15[¢J l5[lP], (2.9) 

where 15[¢] and 15[1/1] are expressed formally by 

° = J F[¢, I/I](S,.[¢, 1/1] + J i) 

X exp {i(J;¢i + J;I/Ij)} 15[¢] 15[1/1] 

= J F[¢, 1/1]( S.i[¢, 1/1] + i ~i) 
X exp {i(J;¢i + J;I/I;)} 15[¢] 15[1/1], (2.11) 

and similarly 

° = J F[¢, 1/1]( S,i[¢, I/IJ + i :1/11) 

X exp {i(J;¢i + Jjl/l;)} 15[¢] 15[1/1]. (2.12) 

Integrating by parts we obtain the following dif
ferential equations for the Fourier transform: 

(S,,;[¢, 1/1] - l5/i l5¢i)F[¢, 1/1] = 0, 

(S,i[¢, 1/1] - l5/i 151/11)F[¢, 1/1] = 0, 

of which the general solution is 

F[¢, 1/1] = Ne'S[~,,,,[, 

(2.13) 

(2.14) 

(2.15) 

where N is a normalization constant. Hence finally 

(CX) 1- CX) = N J exp {i(S[¢, 1/1] + J,-fjJ' + J1I/I1
)} 

X 15[¢] 15[1/1], (2.16) 

which is Feynman's well-known integral for the 
amplitude (CX) 1 - CX) ). 

If we apply the identity (1.27) to (2.16) we get 

(CX) IT'i"'kl"'I_CX) = N J ¢'¢i ... l/IklPl .•. 

X exp lieS + J,,¢" + J.I/I&)} 15[¢J 15[1/1], (2.17) 

and, more generally, 

(CX) IT(A) I - 00) 

= N J A exp lieS + J,¢i + J1I/I1
)} 

X 15[¢] 15[1/1]' (2.18) 

Inserting (2.9) into (2.7) and (2.8) we get 

(2.10) where A is an arbitrary functional of the ¢" 1/11 and 
A is its quantum form. In particular, setting J. = 0, 
J I = 0, we have 

8 The concepts of functional integration and functional 
Fourier transformation are legitimately extendable to 
variables of the anticommuting type. The simplest way to 
do this is to regard each >/II as the product of an anticommuting 
constant and a variable of the commuting type, a different 
anticommuting constant being associated with each value of 
the index i. The integration is then performed over the 
commuting variables. 

0(00 I-CX) = N J & iS I5[¢] 15[I/IJ 

= iN J (I5S)e'S 15[¢] o[I/IJ, (2.19) 

which leads immediately to Eq. (2.3) with IA') = 1(0) 
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and I B') = 1- co ). Equation (2.3) is indeed included 
in (2.19), for as long as «5S vanishes outside the 
interval bracketed by A and B, the states IA') 
and I B') may always be characterized by observables 
of the unaltered system which lie in the remote 
future and past, respectively. 

It will be noted that the dynamical equations (2.5) 
and (2.6) are immediately regained in matrix form 
from the identities 

-iN f [exp tieS + Jjq/ + JjlJ'j) IL 

X «5[¢] «5[lJ'] == 0, 

-iN f [exp ties + Jj¢j + JjlJ'j) III 

X «5[¢] «5[lJ'J == 0, 

(2.20) 

(2.21) 

which follow from Gauss' theorem in functional 
space. The surface integrals at functional infinity 
vanish because of the rapidly oscillating behavior 
of e

iS when ¢i and lJ'i depart widely from classical 
solutions. 

In general, the integration in (2.16) is limited 
to a domain occupied by a definite class of functions 
q/, lJ'i satisfying well-defined boundary conditions. 
In certain cases, however, the domain may be taken 
as unrestricted and the desired boundary conditions 
may be secured by making appropriate infinitesimal 
changes in· the action functional S. A case of par
ticular importance is that of the "vacuum-to
vacuum" amplitude which is obtained simply by 
giving all mass parameters appearing in the theory 
an infinitesimal negative imaginary part, a pos
sibility which is closely related to that of making an 
analytic continuation of the pertinent Green's func
tions from a space-time of indefinite metric to one 
of definite metric with unique Green's functions. 
From now on we shall restrict our attention to this 
case, for it is known that all physical processes can 
be computed from a knowledge of the vacuum-to
vacuum matrix elements of appropriate T func
tionals. 10 When external sources are present the past 
and future vacua are generally distinct, and we 
shall denote them by 10, - co) and 10, co), respec
tively. In using this notation, however, we do not 
mean to imply that either "vacuum" is necessarily 
unique, except in the case of Lorentz invariant 
theories. In the case of quantum gravidynamics, in 
fact, we shall later give reasons for believing that 
many "vacua" are possible, and one of our aims will 

10 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 
cimento 1, 425 (1955). 

be to provide characterizations of such states, dif
ferent from the conventional one in terms of positive 
and negative frequencies, which are capable of serv
ing in the broader context of general relativity. 

3. INVARIANCE GROUPS, INVARIANT MEASURE, AND 
SUPPLEMENTARY CONDITIONS 

When an infinite-dimensional invariance group 
is present, Eq. (2.18) becomes invalid for two reasons. 
First, the appearance of external sources J i and J I 
coupled linearly to the dynamical variables violates 
group invariance. Secondly, no normalization con
stant N exists. Actually N does not strictly exist 
even in the absence of invariance groups, but in 
this case its value is closely related to the spacing 
of the "lattice" in space-time which is conveniently 
set up in order to give a proper definition of the 
volume element «5[¢] «5[lJ'] , and it diverges only in 
the limit as the lattice spacing tends to zero. When 
an infinite-dimensional invariance group is present, 
the functional integral itself diverges, even when 
the lattice spacing is finite. This is because the 
integrand, with J i = J I = 0, remains constant 
instead of oscillating when the functions ¢\ lJ'1 
range over values which differ from one another 
only by group transformations. 

The first difficulty will be removed in this section 
simply by eliminating the external sources from dis
cussion and reintroducing them only in the next 
section where it will be assumed that the dynamical 
variables are group invariants. The second difficulty 
may be surmounted by dealing with the ratio 

(A) = (0, co IT(A) I 0, - co) 
- (0, co 10, - co) 

_ f Ae iS «5[4>] «5[lJ'J 
- f eiS «5[¢] «5[lJ'] 

(3.1) 

instead of with the matrix elements themselves. 
It is well known, in fact, that such ratios play a 
fundamental role in field theory already in the 
absence of infinite dimensional invariance groups.ll 
In Eq. (3.1) a limiting procedure may be imagined, 
in which the domain of integration is allowed to 
tend to infinity after the ratio is taken. It is also 
essential to impose the restriction that A be a 
group invariant. Otherwise the numerator is not 
well defined. We shall see that all physical processes 
can ultimately be computed from a knowledge of 
such ratios, involving group invariants only. 

There is only one additional point which needs 
to be discussed, but it is by no means a trivial one. 

11 J. Schwinger, Proc. Nat!. Acad. Sci. U. S. 37, 452 (1951). 
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If a truly group invariant theory is to be achieved 
it is necessary to demand that the functional volume 
element, represented symbolically by 5[ct>] 5[1#'], be 
itself a group invariant. In general Eq. (2.10) will 
no longer provide a suitable formal definition of the 
volume element, and the question of an appropriate 
"measure" arises. 

In order to deal with this question it will first 
be necessary to review briefly some of the properties 
of invariance groups in the abstract. In doing this 
we shall use the language of finite dimensional Lie 
groups even though the indices appearing in the 
equations which follow will really be continuous 
labels. Abstract group elements will be denoted by 
barred letters x, fj, z, and their explicit representa
tions, or "coordinates," in the functional group 
manifold will be denoted by x", fj~, z." etc. The 
identity element will be denoted by 1. 

The group is determined if the functionals 

r[i, fj] = (ifj)", (3.2) 

which fix the multiplication table of the "group, are 
given. These functionals satisfy the necessary 
identities 

f"[x,l] = 1"[1, x] = x a
, (3.3) 

f"[i, i-I] = f"[i- I
, x] = 1", (3.4) 

f"[x, fjz] = f"[xfj, z]. (3.5) 

By differentiating these identities repeatedly with 
respect to z", fj~, z." and setting various group 
elements equal to 1, one obtains the followingl2 : 

l;.al~ - Z;.alg = ZM." (3.6) 

r;.6r~ - r;.6r~ == -r~c~." (3.7) 

(3.8) 

where l~ and r~ are the auxiliary functionals of the 
group and the op., are the struoture oonstants: 

determined locally by the structure constants. 
Canonical "coordinates" are characterized by the 
conditions 

lp[x]x~ = rp[x]i~ = i", 1" = o. (3.12) 

When these conditions are satisfied the auxiliary 
functionals are given uniquely by 

l[-] c ·X 
x = exp (c·x) - 1 ' 

c·x 
r[x] = 1 exp (-c·x) 

where the symbols on the left, without indices, are 
to be understood as representing the continuous 
matrices having the lp and rp as elements. Here 

(3.14) 

where the 0" are the matrices formed from the 
structure constants by treating their first and last 
indices as matrix indices. With this abbreviated 
notation Eq. (3.8) may be rewritten in the compact 
form 

(3.15) 

which reveals the 0" as the generators of a linear 
representation of the group, known as the adjoint 
representation, which may also be shown to represent 
the group of inner automorphisms.13 The matrix 
D[x] of the adjoint representation which represents 
a finite group transformation is given by 

(3.16) 

the intermediate form holding in an arbitrary "co
ordinate" system, and the final form holding only 
in canonical "coordinates." Among the corollaries 
of the above identities we may cite the following: 

(Tr c-y)c:~ = 0, (3.17) 

(Tr o~)r! = (Tr c~)Z! = Tr c" in canonical 

"coordinates, " (3.18) 

lp[i] == (5f"[fj, i]1 5(hi-l, 

rp[i] == (5f"[i, fj]1 Ofj~)Ii-l' 

c;'Y == (021" [i, fj]1 oi~ of' 

(3.9) det l = det r in any "coordinate" system if 

(3.10) 

- o2r[x, fj]/oi'Y O()i-li-I' (3.11) 

The auxiliary functionals alone can be shown to 
determine the groUp.12 Furthermore, with the intro
duction of oanonioal "ooordinates" based on the one
parameter Abelian subgroups generated by in
finitesimal group transformations 1 + 5~, the 
auxiliary functionals can in turn be shown to be 

12 See, for example, L. Pontrjagin, Topological Groups 
(Princeton University Press, Princeton, New Jersey, 1946). 

and only if Tr c" = 0 for all Q!. (3.19) 

The group manifold possesses two natural volume 
elements, 

Mi] == det Z-I II.. di" , 

5r [i] == det r- 1 II.. dx lX
, 

which satisfy the invariance conditions 

(3.20) 

Mxfj] = 5/[x] , 5.[fjx] = 5r [x], fj fixed, (3.21) 

13 The adjoint representation of the general coordinate 
transformation group is that which is provided by a con
travariant vector field. 
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6z[x- I] = ~r[X], 

and hence 

(3.22) <I>~,6[x, q" ~]r![x] = <I>~;[x, q" ~]R~[q" ~] 

L f[xy] Il l [x] 

+ <I>~j[x, q" ~]Rl[q" ~], 

(3.23) w:,6[x, q" ~]r![x] = w~;[x, q" ~]R~[q" ~] 

+ w:J[x, q" ~]Rl[q" ~], 

(3.32) 

1 tWx] Or[x] = r t[x] Il r[x] , 
R •• R 

(3.24) 

1 t[X-I] 6z[x] = 1 t[x] Or[X], 
R B-1 

(3.25) 

1 t[X-I] ~r[X] = 1 t[x] III [x] , 
R R-' 

(3.26) 

If the group is compact14 and f[x] is bounded the 
integrals may be extended over the entire group. 
In this case condition (3.19) may be shown to hold 
and the two volume elements become identical. 
In general, however, they are not identical. In fact, 
with infinite-dimensional groups Tr c" may not 
exist, and the determinants det l, det r may not 
even be formally definable.16 

Returning now to the consideration of the dy
namical system we remark that each group element 
x defines a transformation of the dynamical variables 
which is expressible in the general form 

q"i = <l>i[X, q" ~], 

~'i = wi[x,q" ~]. 

(3.27) 

(3.28) 

The functionals <1>', Wi must satisfy the identities 

(3.29) 

<I>:[~~, q" ~] = <I>:[~, <I>~, q" ~], ~[~, q" ~]],} (3.30) 

w [xy, q" ~] = w [x, <I>[y, q" ~], wry, q" ~]], 

which, upon differentiation, yield 

<I>;,6[~, q" ~]l:[~] = R:[<I>[~, q" ~], V[~' q" ~]],} 
w.,6[x, q" ~]l .. [x] - R .. [<I>[x, q" ~], w[x, q" ~]], 

(3.31) 

14 In the case of the Yang-Mills field [see (I)J the invanance 
group may be regarded as compact if the 8B8ociated finite 
dimensional Lie group is compact. The coordinate trans
formation group is not compact. 

Iii Tr e" is undefinable in the case of the coordinate trans
formation group. If the abstract group elements x are 
represented by the functions f/'{x) which describe the coordi
nate transformation Xi' --+ fi', then det r-1 can be defined 
formally as 

a(x) 
det r-1[x) = II .. a(x)' 

where a(x)/a(x) is the Jacobian of the transformation, but 
it appears impossible to define det l-1 for this group. 

where the R~, R! are the functionals characterizing 
infinitesimal transformations [cf. II, Eq. (1.1)]: 

R:[q" ~] = (O<l>:[~, q" ~]/O~:>:_I'} 
R"[q,, ~] - (1l'It [x, q" ~]/ ox ) .. -1' 

(3.33) 

Differentiating Eqs. (3.31) and making use of Eq. 
(3.6) one obtains 

R' Ri + Ri RJ Ri R i Ri R J R iC'Y } ... i {J ... J,6 - {J,; ,,- /I.j ,,= 'Y ",6, 

R~'im + R~,JRj - m.iR~ - R~,JR! = R;c~fJ' 
(3.34) 

When the representation which the q,' and ~I 
provide is linear, Eqs. (3.34) reduce to Eqs. (1.5) 
and (1.6) of (II). As in (II) we shall confine our 
attention to this case. The functional space of the 
dynamical variables then becomes the direct product 
of two independent subspaces, one for the q,' and 
the other for the ~i. 

The invariance group defines a family of natural 
metrics in each of these subspaces. A "natural" 
metric is one which admits the group itself as a 
group of motions. Denoting the components of such 
a metric by g,j and go, respectively, for the two 
subspaces, we must have 

(3.35) 

(3.36) 

which are the conditions that the displacements 
/lrJ>', ~~I in the dynamical variables produced by any 
infinitesimal group transformation shall be Killing 
vectors in these spaces. Equations (3.35) and (3.36) 
are also the necessary and sufficient conditions that 
the metrics gij and go transform, under group trans
formations, contragrediently to the homogeneous 
parts (taken twice) of the representations provided 
by q,' and ~l, respectively. The integrability of these 
equations is assured by the identities (1.5) and (1.6) 
of (II); their solutions are unique, however, only 
in the case of transitive representations, which are 
empty of dynamical interest. 

The group invariant volume element associated 
with the metrics Yij, glj is given by 

(3.37) 
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where the "measure" A is defined formally by 

A[I/>, ~] == [det (gjj) det (glj)r /2 (3.38) 

and satisfies the identity 

(AR~).; + A.iR! + AR~.i = O. (3.39) 

A is determined by this identity only up to an arbitrary 
group invariant faGtor. At this stage no argument 
exists which can delimit the measure further. 16 

The metrical structure of the functional space of 
the dynamical variables can be visualized sche
matically by referring to Fig. 1. Each dynamical 
?onfiguration 1/>" ~i corresponds to a point 1/>, ~ 
m the functional space. This point is not assumed 
to correspond to a solution of the dynamical equa
tions, for it must represent an arbitrary field history 
in the Feynman integral. Starting from this point 
one can generate a group invariant subspace by 
performing all possible group transformations on 
the cf>;, ~i. The points of this subspace provide a 
transitive representation of the group. In the cases 
of physical interest the dimensionality of this sub
space is identical with that of the group, the transi
tive representation which it provides being equiva
lent to that which is provided by the mUltiplication 
table of the group itself. (There seems to be no 
a priori reason why this should be so in general, 
however.) 

The group decomposes the functional space into 
invariant subspaces, each of which corresponds to 
a physically distinct field history. Each invariant 
subspace possesses a unique natural metric, and the 
functional A is completely determined within it up 
to a multiplicative factor. The multiplicative factor 
may, however, vary in a completely arbitrary way 
from one invariant subspace to another. 

Each invariant subspace may be labeled by 
choosing a representative point 1/>0, ~o within it. 
The manifold of representative points is conven
iently taken as a set satisfying conditions of the 
form 

16 In the case of the Yang-Mills field R'a., = Tr Ca, and 
~ I?ay ~e set ~qual to. a const~t (e. g't ll;nity) if the associated 
~~Ite dlmenslOn& Lie group IS seml-Blmple. This so-called 

hnear. m';lasure ca~ also be employed In quantum gravi
dynamiCS If the covariant metric is chosen as the fundamental 
field variable. Any nonsingular structure of the form 

gll'[a(gP'g>r + g"rg") + bg"'gOT]a(x, x') 

provides a group-invariant metric for the space of the g 
Such.stmctures, when ~garded as (10 X co 4 ) X (10 X c::) 
ma~nce~, have determmants .wh~ch are .indep~ndent of g V' 

It IS to be noted that the cnteria of thIS sectIOn reject the 
measure 

~ = II~ g-6/!(X), g "" - det (U",), 

which has been proposed by Misner. [C. W. Misner Revs. 
Modern Phys. 29, 497 (1957).] , 

FIG. 1. Decomposition of the functional space of dynamical 
variables into group invariant subspaces. 

(3.40) 

where the R" are arbitrary independent local func
tionals equal in number to the dimensionality of the 
group. Although the difference between this di
mensionality and that of the full functional space 
is transfinite we shall, in referring to Fig. 1, speak 
of the manifold of representative points as the 
dynamiGalline. The only restriction on the dynamical 
line is that it must intersect each invariant subspace 
in exactly one point. 

Conditions of the form (3.40) are referred to as 
supplementary oonditions. Because of the hyperbolic 
character of space-time it is usually argued that 
supplementary conditions do not define a unique 
representative point 1/>0, ~o, i.e., that the dynamical 
line intersects each invariant subspace in not one 
but an infinity of points. In support of this view 
it is pointed out that the supplementary conditions 
remain unchanged under infinitesimal group trans
formations for which the parameters o~a satisfy 
the equation 

(3.41) 

where 

(3.42) 

Since Fall is usually a wave operator of normal type, 
Eq. (3.41) has an infinity of solutions. 

Within the framework of the Feynman theory, 
however, this multi-valuedness disappears. It is 
important to note that in the definition of the 
functional integrals two limiting procedures are 
implied. Not only must a lattice be set up with 
a spacing which tends to zero, but also this lat
tice. mu~t at any stage be of finite size, tending 
to mfimty only as an idealization at the end. 
Thus the fields in the functional integration vary 
only within a bounded region of space-time 
which we shall call the experimental region ~ 



                                                                                                                                    

1082 BRYCE S. DEWITT 

recognition of the fact that it is determined in 
practice by the limits of some physical apparatus, 
the meter readings of which the theory is designed 
to predict. 17 Outside of this region the fields are 
held at fixed values which may for convenience be 
chosen so as to satisfy the classical field equations 
there, as well as the supplementary conditions (3.40), 
and which, by appropriate adjustment of the zero 
point, may be taken as<f>' = 0,1/11 = O. Fields satisfy
ing these conditions will be said to lie in the ex
perimental subspace. 

The representative point CPo, 1/10 may now be 
uniquely fixed by requiring that the fields cp~, 1/1~ 
vanish everywhere outside the future light cone of 
the experimental region. This imposes a retarded 
or "outgoing wave" condition on the parameters 
o~" of Eq. (3.41), with the result that the only 
permissible solution is o~" = 0. 18 Under these 
restrictions the quantities cp~, 1/1~ become true group 
invariants. 

We shall demonstrate this invariance in detail 
by obtaining an equation for the unique group 
element x[cp, 1/1] which transforms each point cp, 1/1 
in the experimental subspace into its corresponding 
representative point. It is to be noted that the 
representative point itself need not lie in the experi
mental subspace since the functions cp~, 1/1~ are not 
required to vanish at space-time points which lie 
outside the experimental region and inside the for
ward light cone of this region. No practical generality 
is lost if we limit our attention to the case con
sidered in (II), in which the group representation 
provided by the 1/I i is linear homogeneous while 
that provided by the cp' is linear inhomogeneous, 
with the zero point chosen as above.19 The supple
mentary conditions are then expressible in terms of 
the cp~ alone, 

R,,[cpo] = 0, (3.43) 

and the group element x depends only on the <p'. 

17 It is not essential to the argument that the experimental 
region be here given an intrinsic (i. e., coordinate invariant) 
specification. Such a specification is always automatically 
accomplished when the apparatus itself is included in the 
action functional. 

18 Compare with V. Fock, The Theory of Space Time and 
Gravitation (Pergammon Press, New York, 1959). Il~" is 
always assumed to vanish at infinity, thus eliminating any 
remaining finite dimensional groups of transformations which 
might otherwise be possible (e.g., Lorentz group). 

10 In (II) the zero point was chosen to correspond to flat 
empty space-time. The restriction to this particular solution 
of the classical field equations is not essential, and for the 
sake of greater generality we abandon it here. We note that 
a shift of the zero point does not destroy the linearity of 
group transformation laws. 

We must have 

cp~[cp] = <I>'[x[cp], cp].l 

1/I~[cp, 1/1] = 'lti[x[cp], 1/I]J 

and the condition to be satisfied is 

R,,[<I>[x[cp], cp]] == O. 

(3.44) 

(3.45) 

Differentiating this equation with respect to cp' and 
making use of (3.31), we get 

F "'Y [<I> [x[cp] , cpJ] r1 ~[x[cpJ]x~ ,[cp] 

+ R".;[<I>[x[cp] , CP]]<I>:i[X[CP] , cp] = 0, (3.46) 

which yields, in virtue of the outgoing wave bound
ary conditions, 

x.~[cp] = l;;[x[cp]]G-·h[<I>[x[cp], cpJ] 

X R'Y.;[<I>[x[cp] , cp]]<I>:,[x[cp] , cp], (3.47) 

where G-"~ is the retarded Green's function of the 
operator F "p. Equations (3.47) constitute a set of 
simultaneous first-order functional differential equa
tions which must be integrated subject to the 
boundary condition: x"[cp] = 1" when cp lies in the 
experimental subspace and R,,[cp] = O. It is straight
forward to show the integrability of these equations, 
by differentiating them with respect to cpi and 
verifying that they imply the necessary symmetry 
of the result in the indices i and j. 

Making use of (3.31), (3.32), (3.44), and (3.47), 
we have 

cp~.;R~ = (<I>~P~i + <I>:;)R~ 
= (<I>:pl~G-'Y6Ra.;<I>:. + <I>:.)r: 

= (<I>:pl~G-'Y6Ra.;RfZ-1~ + <I>:,)r; = 0, 

1/I~.;R; + 1/I~.jR~ = 1/I~p~;R; + l/;:jR~ 
= (l/;~pl:G-'YaRa.;<I>:. + I/;\)r; = 0, 

(3.48) 

(3.49) 

which reveals the group invariance of <f>~ and 1/1! 
in explicit form. The group transformation law for 
x[cp] is readily inferred by noting that when cp' 
suffers the infinitesimal transformation 

cp' ~ <I>'[1 + o~, cp], 

x[cp] must transform according to 

x[cp] ~ x[cp](1 - o~), 

and hence 

ox" = -r'P[x] ot. (3.50) 

This can also be verified directly with the aid of 
(3.31), (3.32), and (3.47): 
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oia 
= i .~R~ O~II 

= l~G-laRa.jR:r1;r~ ot = -r; ot. (3.51) 

Because of the supplementary condition (3.43) 
the q,~ are not all independent. Out of them we may, 
however, construct a complete independent set q,~ 
and then perform the transformation q, i, ",I -4 i a

, 

q,~, ",~. The new variables are "natural" variables 
for the dynamical system. The cross sections q,~ = 

const, '" ~ = const are the invariant subspaces. Since 
each invariant subspace transforms into itself, as 
Eq. (3.50) explicitly shows, the group invariant 
measure for the functional space is separable in 
these variables, and it is not hard to show that it 
takes the form 

(3.52) 

where ~o[q,o, "'01 is completely arbitrary. 
The natural measure of the group makes its 

appearance here as a necessary consequence of the 
introduction of the group parameters themselves as 
"dynamical variables." That it should be det r 1 

rather than det r- 1 which appears is a consequence 
merely of the particular convention employed for 
defining i[q,l. Under the transformation i -4 i-l 
we get det r- 1 instead. 

For the measure (3.52), Eq. (3.39) reduces, in 
virtue of (3.50), to 

(det Z-lr~).a = O. (3.53) 

This identity, which holds for any group, is readily 
verified in canonical "coordinates." Using (3.7), 
(3.16), and (3.18) we get 

(det Z-lrfJ) = (eTr c·ft det r-1r ll) 
~ a .11 a .fJ 

= eTr c," det r-1[(Tr cli)r! - r-1~r;.fJr~ + r!.fJ] 

= det r 1 (Tr Ca + r-1~r:C~a - r-11r~.fJr~ + r!.fJ) 

= 0, (3.54) 

thus confirming the correctness of (3.52). If we now 
introduce the functional Jacobian o[i, q,o, "'ol/o[q" "'1 
we may write the group invariant measure for the 
original variables q,', ",I in the form 

~[q" "'] = ~o[q,o, "'0] det Z-l[i] o[i, q,o, "'o]/o[q" ",]. 
(3.55) 

Using (3.48), (3.49), and (3.51) it is straightforward 
to show that this functional satisfies Eq. (3.39): 

(M~)., + ~.IR~ + M~.I 
= Ll[-Z-l~l;.ai~iR~ + (oq,;loxll)i~;;R; 

+ (Oq,j/Oq,~)q,~.iiR~ + R~.i 

+ (o",j/o"'~)("'~.liR~ + "'~.jiR~) + R~.i] 
= ~[z-l~l;.ar! + (Oq,j/oxll)(~iR;L 

+ (Oq,; I Oq,~)(q,~.,R;).j 

+ (Njlo",~)(",~.,R; + "'~.iR~).j] 
= ~(l-l~l;.ar! - r! .(1) 

= - ~ det l(det Z-lr!).1i = O. (3.56) 

Weare now in a position to reformulate the 
quantization prescription expressed by Eq. (3.1). 
Let us denote the experimental subspace by R. In 
terms of the variables i a

, q,~, "'~ it may be expressed 
in the form 

R = II CR[q,o, "'0]' (3.57) 
tPo.!jIoERo 

where the symbol II denotes the set-theoretic 
direct product, Ro is the projection of R on the 
dynamical line, and CR[q,o, "'01 is the intersection of 
R with the invariant subspace labeled by q,~, ",~. 
Since A and S are group invariants, and hence 
independent of i a

, we may write 

1 Ae'S o[q,] 0["'] 
(A) = lim ~R!...-___ _ 

R-'" LeiS o[q,] 0["'] 

r 1 o[q,o] 0["'0] r Mi]Ae
iS 

lID R. J(J\( ••. .p.1 
<R[t/Jo. "'0)- group 

R.-'" 1 o[q,o] 0["'0] r Mi]e'S 
R. J ~[ ••. .p.1 

1 Ae'S o'[q,o] 0'["'0] 
= lim ~R.,--______ , 

R._a> r e'S o'[q,o] 0'["'0] 
JRo 

where 

o[q,oJ 0["'0] == ~o[q,o, "'0] IIA dcfJt III d"'~, 

o'[q,o] 0'["'0] == ~Hq,o, "'0] IIA dq,t III d"'~, 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

Thus the Feynman integrals reduce to integrals on the 
dynamical line. Furthermore since the functional 
~o[q,o, "'01 is so far completely arbitrary we lose 
no generality by assuming that the original experi-
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mental subspace R has uniform cross section in the 
invariant subspaces, so that the weighting factor 
in (3.61) reduces to unity. 

These results are evidently independent of the 
choice of the dynamical line, i.e., of the particular 
choice of supplementary conditions. Indeed, it is 
easy to show that a change in the supplementary 
conditions leads to new representative points CPo, "'0 
which are obtainable from the old by a group trans
formation. The requisite group parameters are 
functionals of the cP~, "'~ alone, and hence the new 
representative variables are functionals solely of 
the old, as is to be expected from the fact that the 
new variables, like the old, constitute a complete 
set of invariants. Thus if we consider infinitesimal 
changes oR" in the functionals Ra[CPol and write 

",~i = "'~ + lJ"'~, lJ"'~ = R~L"'o] lJ~a, 

o = Ra[CPo + lJcpo] + lJRa[CPo + lJcpo] 

we obtain 

= Fa/l[CPo] lJt + oRa[CPo], 

o~a = G- a/l[cpo] oR/l[cPo] , 

lJcp~ = R~[cpo]G-a/l[cpo] lJR/l[CPo] , 

lJ"'~ = R~["'o]G-a/l[cpQ] lJR/l[CPo]. 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

Group transformations of this kind are often 
regarded as posing serious problems for the theory 
because in operator form the parameters (3.65) 
become q numbers. Here, however, no operator 
difficulties arise because we are working with the 
variables of the Feynman integrands, which are c 
numbers. In passing from one set of supplementary 
conditions to another we have only to remember 
to include the Jacobian of the transformation cP~, 
"'~ ~ cp~A, ",~i in the new measure. 

This nevertheless does not mean that the Feyn
man quantization prescription by itself solves such 
problems as the factor ordering ambiguity, even in 
principle. This and a multitude of other serious 
problems, such as unitarity, renormalization, etc., 
are actually hidden in the question of what choice 
to make for the measure Ao[cpQ, "'01. The formal 
theory itself offers no immediate guide to this 
question. That is to say, the measure is not directly 
determined by the group. It must be determined by 
the physics. The physics is described by the variables 
cP~, "'~, which are independent of the group; the 
variables xa are irrelevant in this description. The 
only significance which the group has is that it 

provides (in normal cases) the means by which the 
physics can be described in terms of a local field 
theory. This significance should not be minimized, 
but there is no reason to suppose that it is decisive 
in the question of the measure. 

It should finally be mentioned that the introduc
tion of invariant variables cP~, "'~ is not merely of 
theoretical importance but is also of practical 
utility. In the case of local field theories the sup
plementary conditions are usually chosen to be 
linear differential conditions. In momentum space 
these become algebraic conditions which permit 
independent invariant variables to be found with
out difficulty. Momentum space is well suited for 
perturbation calculations, and the use of the in
variant variables is a convenient means for keeping 
such calculations manifestly gronp invariant. Ac
tually, perturbation calculations have seldom been 
carried out in this way. The supplementary condi
tions are usually employed to restore group invariance 
to a theory which has been previously mutilated 
bv the addition of a non-invariant term of the form 
!gal'RaRfl to the action, which necessitates a non
physical enlargement of the Hilbert space.20 The 
invariant variable method, on the other hand, intro
duces no nonphysical elements. Its utility will be 
illustrated in a future paper through application to 
specific examples. 

From now on we shall work only with the in
variant variables. Although these variables are neces
sarily nonlocal when the local form of the theory 
involves an infinite dimensional invariance group, 
this causes no difficulty for the application of the 
formal theory. T functionals can be defined in 
momentum space just as well as in coordinate space 
by the device of varying external sources. From the 
point of view of the theory of functionals a Fourier 
transformation is merely a particular linear trans
formation. 21 

4. CORRELATION FUNCTIONS AND PROPAGATORS 

If the invariance group is removed from the scene 
by the method indicated in the preceding section 
the discussion may be resumed on the basis of the 
procedures developed in Secs. 1 and 2. We may, 
without loss of generality in fact, revert to the 

20 The equivalence of the invariant variable method to the 
conventional approach has been demonstrated in detail 
within the framework of the Feynman quantization scheme 
by H. van Dam (to be published). The author is indebted to 
Dr. van Dam for many enlightening discussions on the 
problem of group invariance. 

21 If the topology of space-time is non-Euclidean, alter
native linear transformations will be required. 
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assumptions of these earlier sections, namely that 
<1>' and 1/11 are themselves invariant, it only being 
necessary to recognize that the indices i and i 
may now refer to a continuum other than space
time (e.!!:., momentum space). 

An essential point of distinction between the 
classical and quantum theories, and one which 
makes the "rigorous" discussions of the present 
paper so much more difficult than the quasi-classical 
considerations of (I) and (II), is the fact that in 
the quantum theory the mean value of a product 
is not generally equal to the product of the indi
vidual mean values. The type of "mean value" 
which is convenient to use in quantum field theory 
is the Schwinger average given by Eq. (3.1), and the 
distinction referred to may be fully described by 
the following hierarchy of correlation functions: 

a'i ... kl'" = _0 __ 0_ ... _o __ o_G 
- oj, oJ i Mk oJ I ' 

(4.1) 

G == -i In (0, 00 I 0, - (0). (4.2) 

[
Gi; Gii] = [O/M'](If/l/li) , (4.5) 

Gli Gil a/M I 

evidently satisfy the boundary conditions of Feyn
man propagators. They also satisfy the symmetry 
relations 

(4.6) 

Vacuum-to-vacuum matrix elements of T func
tionals may be expressed in terms of the correlation 
functions by the following device. We introduce a 
set of parameters ~" 711 having the same commuta
tion properties as the sources J" J, and write 

m 1 
L: m' n' 71J. ••• 71i,tm ••• ~" 

"...n-O • • 

x (0,00 ITi""'mj,o"inl 0, -(0) 

= exp (~i i :Ji + 711 i :J)<O' 00 10, - (0) 

... ~" 

(4.7) 

The correlation functions of the two lowest orders 
play a special role in the theory. The second-order 
functions Gii

, G'i, G ii , Gii are called propagators 
for the individual field quanta, and the first-order 
functions G', Gi are conveniently given the special 
notational designation 

If we divide this equation by the vacuum-to
(4.3) vacuum amplitude (0, 00 10, - (0) we get G' = (.pi) = (0, 00 lei'; I 0, - (0) == If>' 

(0, 00 I 0, - 00 ) , 

GI = (,e> = (0, 00 Itk,11 0, - (0) == y/. 
(0, 00 I 0, - 00 > 

(4.4) 

Although the classical symbols cp" I/I i have already 
been used in the Feynman integrals, their reintro
duction here to denote also the mean values (.p'), 
(tkl > is deliberate, for it turns out, as we shall see 
in the next section, that the quantum cp" y/, like 
the classical cp', 1/11, are solutions of a set of c-number 
equations derivable from a variational principle. 
In the present case the variational principle is based 
on a c-number action functional r, of which the 
propagators Gii , Gil, etc., are Green's functions. The 
difference between the classical and quantum varia
tional principles consists in the fact that the quantum 
<1>" 1/1 1 are complex even when the classical <1>" 1/11 

are real, and in the fact that r leads to nonlocal 
equations even when S (in the absence of infinite 
dimensional invariance groups) yields local ones. 

The functions G';, Gii etc., describe the linear 
response of the quantized system and, in virtue 
of Eqs. (4.3), (4.4), a.nd the relation 

mIl: I: /.1." ••• .I.'''.,)' ... • "i n ) 
~ m' n' 71J. ••• 71i,<;i m ... <;,,\"1" "I" "t: "t: 

m,n-O • • 

= exp [~iCP' + 1/11/11 + i L: (_i)m+m 
m+n~2 m! n! 

(4.8) 

By picking out terms of equal degree in the fs 
and 71'S on both sides of this equation, we obtain 
expressions for the Schwinger averages of T func
tionals in terms of the correlation functions. For 
example, 

(.p'.pi) = -iGii + cp'cpi, } 

(.p'.pi.pk) = (_tYG,i k _ iG'icpk _ iGikcpi 

- iGkicpi + cpicpicpk, etc., 

(4.9) 

with corresponding expressions in which the light
faced indices are replaced in all possible ways by 
boldface ones. 

For the Schwinger average of the chronologically 
ordered form of an arbitrary operator A we have 
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'" 1 0 
(A) = L -, -, A. j •••• j " ..... ;, 

m.n=O m. n. 

where A is an abbreviation for A[q;, ifil and the 
derivatives with respect to the barred variables are 
to be understood as right derivatives which act to 
the left in the order in which they appear from left 
to right. Equation (4.10) becomes clearer in ex
panded form. For example, if A depends only on 
the ~i, then 

(A) = A + (-i) A . . Gi ; + (_~)2 A .. Giik 

2!'" 3! .k" 

which expresses the Schwinger average in terms of 
the correlation functions of order two and higher, 
together with the "classical" quantities A, A ,ii, 
etc. evaluated with cpi = (~i). The case in which A 
depends also on the ~I is obtained by a straight
forward inclusion of boldface as well as lightfaced 
indices. 

With the aid of Eq. (4.10) it is not difficult to 
show that 

8~i (A) = S!f.iG
ii + ~jGji, } 

(4.12) 

8~1 (A) = ±~;Gii ± ~jGjI, 

where 

(4.13) 

8 8 8 8 X--···----···--, 
M i , M i .. M j , M j • 

and where the upper or lower sign is taken according 
as A is of the commuting or anticommuting type. 
The proof of this useful lemma will be left to the 
reader. 

S. THE FUNCTIONAL r. RENORMALIZATION 

The functionals of the preceding section may be 
regarded as depending either on the cp" 1/11 or on the 
J i , J I • The transformation coefficients from one 
set of variables to the other are the propagators 
(4.5). The explicit functional relation between the 
two sets of variables is determined by the Schwinger 
averages of Eqs. (2.5) and (2.6): 

(s .) = -J. 
,1. " 

(5.1) 

Under a variation in the independent variables 
we have 

8«S.i) (S.I») = (Mi M j ) [81M;] «S .• ) 
81M j 

= (8cpk 81/1k) [ (S .• ).k (8. i ).k] 

-(8. i ).k (8.1).k 

= (Mi M j ) [G:k 
_G:

k

] [(8 .. ).k 

GJk _GJk (8.').k 

and hence, in virtue of Eqs. (5.1), 

(S.i).k] 
-(S.i).k 

(5.2) 

[G:: -G::] [(8. i ).k (8. i ).k] = [- 8~ 0] 
G _G J (8. i ).k -(8. i h 0 -8i' 

(5.3) 

The matrix formed from the (8 ,i) .k, etc., is thus 
seen to be the negative inverse of the matrix formed 
from the propagators. Although the former matrix 
is generally nonlocal (even when no infinite di
mensional invariance groups are present in the 
original formulation of the theory) it is nevertheless 
equal in zeroth approximation to the matrix 

[
S.ki S.ki] 
S,ki S.ki 

and has therefore the general characteristics of a 
wave operator. It is consequently the unique in
verse of the propagator matrix. Furthermore, from 
arguments of the type already introduced in (II) 
one may infer that Eq. (5.3) implies also the equation 

[
(8 ) . (8) 'J [Gki _Gkl

] [- 8; 0 ] (8::):: -(8::):: Gki _Gkl O' -8i ' 
(5.4) 
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just as in the case of finite matrices. From Eqs. (5.3) 
and (5.4) and the symmetry relations (4.6) the 
following identities may therefore be deduced: 

(S.i).k = (S.k)." 

= (S.k).i, 

{S .• h 
(S.I).k = -(S.k).I' (5.5) 

But these identities imply the existence of a func
tional r such that 

(S .• ) = r .• , (5.6) 

In terms of this functional the basic equations of 
the theory become 

r.i = -J i , (5.7) 

= Ik... .ki = ... 
[
G

ik 
_Gik] [r. r] [- 6~ 0 ] 

Gik _Gik r. k • r. ki 0 - 6~ . 
(5.8) 

The higher-order correlation functions may be 
re-expressed in terms of propagators and derivatives 
of the functional r by repeated use of the identity 

o[Gi
; _Gil] = [G ik 

_G.
k

] 

GI ; -Gil Gik _G1k 

x o[r.kl 

r. k ! 

r ] [G l

; .kl 

r.kl Gli 
(5.9) 

Before showing how this comes about we remark 
that although the identity (5.9) always holds in 
the case of finite matrices it does not hold for all 
Green's functions in a space-time of indefinite 
metric. That it does hold for the Feynman propa
gators, at least in a space-time which is asymp
totically flat, is a consequence of the special bound
ary conditions on these propagators (i.e., positive 
frequencies in the remote future, negative frequencies 
in the remote past) which are preserved by Eq. 
(5.9). The Feynman propagators are, in fact, the 
unique Green's functions which satisfy both Eq. (5.9) 
and the symmetry conditions (4.6).22 This means 
that in formal manipulations the Feynman propa
gators always follow the rules of finite matrix theory, 
a fact which stems from the close relation (via 
analytic continuation) which the Feynman propaga
tors have to the unique Green's functions of mani-

21 Other Green's functions may satisfy one or the other of 
these conditions but not both. For example, the retarded and 
advanced Green's functions satisfy (5.9) but not (4.6), 
whereas the average of the retarded and advanced Green's 
functions satisfies (4.6) but not (5.9). 

folds with definite metric. But it also suggests an 
inverted view of the Feynman propagators. It 
should be possible to demand that these propagators 
satisfy both (4.6) and (5.9) and hence to define them 
uniquely in contexts in which the concepts of 
positive and negative frequencies and a unique 
vacuum are inappropriate, e.g., in the case of space
times having nonstatic asymptotic curvature or 
space-like cross sections of non-Euclidean and even 
dynamically changing topology. 

If we now expand the left- and right-hand sides 
of Eq. (5.9) we get 

OJk[Giik _Gm
] + OJk[ G

Hk 
Giik _G i1k _G lik 

= [G H -G::] [&pn[r' lm
" r.!mn] 

Gil -G _ r. t ..... r. lmn 

=G::][Gk" (r.!",n r.!mn] 
G .r. lm.. r. lmn 

_ r'lmn]] 
r. lmn 

r.!mn] 
r. lmn 

(5.10) 

from which expressions for the third-order cor
relation functions may be directly extracted. 
Equation (5.10) and the equations which follow 
from it through repeated differentiation with 
respect to the sources all have simple graphical 
representations. Ignoring signs and anticommuta
tivity we may represent the propagators by lines 
and the derivatives of r by vertices or forks having 
prongs equal in number to the number of functional 
differentiations. The correlation functions are then 
represented by diagrams in which lines are joined 
together at vertices in the same ways that the 
propagators in the explicit expressions are coupled 
to derivatives of r by dummy indices. It is easy 
to see that differentiation with respect to a source 
corresponds to the insertion of an external line in 
all possible ways into a given diagram (including 
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ell 

d) * + PI0H< +P
10 * 

.Poo!y- · p .. >-k 

'P~-O- · P"~ 
FIG. 2. Diagrammatic representation of correlation func

tions: (a) third order, (b) fourth order, (c) fifth order, (d) 
sixth order. The symbol P indicates that the indices associated 
with the external lines are to be permuted just sufficiently to 
yield complete symmetry-. The numerical subscript indicates 
the number of permutatIOns required in each case. 

at pre-existing vertices). Similarly, differentiation 
with respect to a variable c/> i or 1/11 corresponds to 
the insertion of a vertex prong in all possible ways. 
Iteration of this lUle leads to Fig. 2 which depicts 
the correlation functions of orders 3, 4, 5, and 6. 
It is seen that each correlation function is expressible 
as the sum of all simply connected23 diagrams having 
a fixed number of external lines, the indices attached 
to the latter being permuted just sufficiently to 
yield the appropriate symmetry. 

When the anticommuting sources J i vanish it 
is possible to make a diagrammatic distinction be
tween fermion and boson propagators, the former 
being conventionally represented by solid lines and 
the latter by dotted or wavy lines. This is because r, 
like S, is necessarily of even degree in the 1/11 so 
that r. i ;, Gil, 1/II, and, in fact, all anticommuting 
quantities vanish when J i = O. The fermion lines 
must then join together in pairs at every vertex, 
forming, throughout a given diagram, a network 
of continu0us lines which can be divided into two 

23 A simply connected diagram is one which has no dis
connected parts but which is divided into two disconnected 
parts by cutting any line. 

groups: (1) those which terminate only in external 
lines, and (2) those which close upon themselves 
within the interior of the diagram. 

The functional derivatives of r of order three 
and higher are called vertex functions. These are 
the full irreducible vertex functions of the theory. 
The so called bare vertex functions are the corre
sponding derivatives of the original classical action S. 

The c-number theory based on r is seen to be a 
nonlocal theory having a form or initial "direction" 
which is set, via the correspondence principle, by 
a limiting theory based on S. The classical field 
theory may be regarded as a kind of "tangent 
theory," the relevance of which as a starting point 
for the rigorous quantum theory depends on two 
crucial conditions: (1) the renormalizahility of the 
quantum theory, and (2) the applicability of per
turbation theory so that r differs from S only by a 
small amount which describes pure quantum effects 
(e.g., vacuum polarization). 

It is possible to obtain a number of interesting 
expansions by various formal manipulations of the 
quantities thus far introduced. We mention only 
one of these here: If we differentiate Eqs. (5.1) and 
make use of the lemma (4.12), (4.13), we obtain 

where 

_ 1 ~ 6.. ( _1),"+n 
tyij = 2" '"~o 2 (m + l)!n! 

(5.11) 

o 0 0 0 
X (S.'ij.-"i,'m''''') SJ . ... ~ aJ . ... aJ. ' 

'1 'WI Jl J,. 

_ 1 ~ amo (_i)m+n 
lJ.; = 2" m~o 2 mIen + 1)! 

8 S 8 S 
X (S"i;n ... j"m'''',) 8J" ... SJim SJ

i
, •. , SJ;n ' 

_ 1 ~ 6.. (_i)m+n 
i)'li = 2" m~o 2 (m + 1)!n! 

8 8 8 8 
X (S.li;.- .. j'; .. "·;') oJ., ... 8J,m oj;. ... oj;. ' 

_ 1 ~ am. (_i)m+n 
lJii = 2" ,"~o 2 mIen + 1)! 

S S 8 S 
X (S.ijj. ... j,i ..... i.) ~J . ... ~J. ~J . ... "J . 

u '1 U 1. '" u~ J 1 U jn 

(5.12) 

This result may then be used to write 
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+ [[~ik - (S,ik) 

~Ik - (S,lk) 

whence 

[
r .. 

,Il 

r,li 
r .oj ,'1 

r,ij 

where 

r"j] , 
r,lj 

[
(S, i i) (S, il)] 
(S,ii) (S,U) 

+ [X~ -Xkki] [r'ki 
X~ -x I r,ki 

X i == . " (_i)m+n 
• ~ LJ "--eL,-:-, 

m+n~2 m. n. 

r"jj-l 
r,lj J 
r"jj 
r,lj 

r,k j ] , 

r,kj 

(5.13) 

(5.14) 

(5.15) 

and where xl. xL xi are defined by the same 
expression with the lightfaced indices i and/or j 
rewritten in boldface. If no fermion fields are 
present (5.14) reduces to 

r,il = (S.i;) + (;~) (S,ik/)Gk1mr,m; 

+ (_i)2 (S )Gk1mnr + 3! .iklm ,ni· •• (5.16) 

Equation (5.14) is an integral equation which may 
be solved by iteration to obtain the r ,ii' r ,ilt etc., 
in terms of the (S ",), (S,iik), etc., and hence, through 
application of Eq. (4.10), in terms of the functional 
derivatives S ,ii, S ,iik, etc., of the original classical 
action. 

It is important to note that because the X's 
contain the correlation functions as well as the 
S,;;, S,iik, etc. Equation (5.14) has a hybrid char
acter involving both the full vertex functions and 
the bare vertex functions. Such a situation is 
actually an inconvenience in the practical applica
tion of the theory, when infinite renormalizations 
must be performed, since it is related to the diffi
culty of overlapping divergences. This difficulty can 

(i::)= to -t8 -t(D 

-t 6-~O<J' 
FIG. 3. Diagrammatic representation of the first derivative 

of the self-energy functional (radiative corrections to the 
classical field equations). 

be avoided by first getting rid of the bare vertex 
functions, and the discussion of the whole renormali
zation program is then greatly simplified. Fortu
nately the procedure for doing this is straight
forward. Instead of starting from Eq. (5.14) we go 
back to Eq. (4.10), which we note may be expressed 
in the form 

(A) = (1 + D)A, (5.17) 

where D is a sum of functional differential operators 
having combinations of the correlation functions 
as coefficients. The advantage of this equation is 
that it may (formally at least) be inverted, allowing 
us to write in particular 

S,. = (1 + O)~:r'i'} 
S,I = (1 + D) r,i' 

(5.18) 

Everything on the right of these equations is im
mediately expressible in terms of propagators and 
full vertex functions only. 

Expanding the inverse (1 + D)-1 by the bi
nomial theorem, expressing the correlation functions 
in terms of the vertex functions as in Fig. 2, and 
performing the required functional differentiations, 
one obtains equations of the form 

S,. = r,i + ~.} 
S,I = r,l + ~i 

(5.19) 

where ~. and ~I can be represented as a sum of 
diagrams the first few terms of which are pictured 
in Fig. 3. It is clear that ~. and ~I must themselves 
be derivatives of some formal functional ~: 

(5.20) 
so that 

r = S - ~. (5.21) 

Indeed, remembering that functional differentiation 
with respect to q,' and y,.1 corresponds to the insertion 
of a vertex prong in all possible ways into a given 
diagram, one may verify this fact directly from the 
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-ieo -tCDO 

-.k OC>O -4~C~~Y 
FIG. 4. Diagrammatic representation of the self-energy 

functional. 

diagrams. The first few terms in the expansion of 
2; itself are pictured in Fig. 4.24 The author has 
not succeeded in obtaining any simple closed ex
pression for the general term of this expansion, 
which is unfortunate since the expansion sums up 
the basic formal structure of all quantum field 
theories. However, this does not prevent us from 
reaching important conclusions about the theory. 

The continuous matrix 

[

2;.ii 2;.ij] 

2; ,Ii 2;.11 

is known as the mass operator or self-energy operator, 
and we shall conform to this convention by calling 
2; the self-energy functional even though it des
cribes all radiative corrections to the classical 
theory and not merely the mass corrections. Actually 

24 When fermion fields are absent the first term on the 
right of Fig. 4 represents the logarithm of a formal deter
minant: -(i/2)ln det (r,;;). Its derivative is (i/2)Gikr,kj" 
which is depicted in the first term on the right of Fig. 3. The 
occurrence of this determinant is interesting because it 
suggests It relation between the lowest order self-energy 
diagrams (to which it gives rise in Fig. 5) and the choice of 
measure in the Feynman functional integral. It may be 
shown that if the measure is chosen to be 

.:l = [det (r ,.;)]1/2 "" [det (8,.;)]1/2 

then the left side of Eq. (2.5) is formally Hermitian up to the 
third order in a perturbation expansion, a result which is 
particularly suggestive in view of the similarity of this 
measure to the well-known VanVleck determinant of WKB 
theory [see J. H. Van Vleck, Proc. NatI. Acad. Sci. U. S. 
14, 178 (1928); also B. S. DeWitt, Revs. Modern Phys. 
29, 377 (1957»). Two things are wrong with this measure, 
however: (1) It fails to maintain Hermiticity in fourth order, 
(2) If elevated into the exponent of the Feynman integral it 
is equivalent to the addition of - (i /2 )In det (r.;;) to the 
classical action and hence to the complete cancellation of 
lowest order radiative corrections, in contradiction to experi
ment. 

the mass corrections are the least important beoause 
they are subtracted. To see how the renormalization 
program works we consider the equation 

[

1' " ,l2 

l' .Ii 

2; .• 1], -;.;;; 
2;. ij 

l' ,.] [S .. • SJ = ,''1 

r. lj S,li 

S ,,] [2; .. ,IJ _ .s, 

S.ij 2;.i; 

the first three terms of which are pictured in Fig. 5. 
This is a nonlinear functional differential equation 
in 1', with the second derivatives of S forming an 
inhomogeneous term. In lowest approximation we 
may use bare vertex functions and the classical 
propagators in the expansion of the self-energy 
operator. This then gives us a first approximation 
to the matrix (5.22), which may be functionally 
differentiated to obtain corrections to the bare vertex 
functions and inverted to obtain corrections to the 
classical propagators. The corrected quantities may 
then be used in the expansion of the self-energy 
operator and the whole process repeated. The func
tional differentiations may either be performed on 
the explicit expressions obtained, or diagrammat
ically. A wide variety of iteration or approximation 
procedures may be in principle employed. 

The validity of such procedures depends, of 
course, on their convergence, about which essentially 
nothing is known. The advantage of the present 
scheme, however, is that renormalization may be 
performed equally easily with any of these pro
cedures. At any level of approximation divergences 
will generally appear when summations (integra
tions) are performed in the individual terms of the 
self-energy expansion. The renormalization program 
consists simply of throwing these divergences away, 
which is equivalent to assuming that corresponding 
"counter terms" are already present in the classical 
action S. The matrix (5.22) itself must always be 
kept finite so that only renormalized propagators 
and vertex functions are used in the evaluation of 
the self-energy operator at any approximation stage. 
The net result of this procedure may be summarized 
by the equation 

l' = Sn - [2;], (5.23) 

where SR denotes the renormalized or "observed" 

FIG. 5. Diagrammatic representation of Eq. (5.22). 
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classical action and the square brackets indicate 
that only the finite part of the self-energy functional 
is to be taken. 

Of course there is some ambiguity about which 
is the "finite part" and which is the "divergent 
part" of a given integral, and the success of the 
renormalization program depends on (1) the pos
sibility of separating the divergent parts in an in
variant manner, and (2) giving them simple physical 
interpretations in terms of renormalizations of 
fundamental constants such as mass, charge, gravi
tation constant, etc. The latter condition appears 
to be necessary to insure that the renormalization 
process does not destroy basic features already 
present in the classical theory. In particular r must 
describe an essentially local theory in the long wave
length limit. Furthermore the field equations of 
this theory must, in the small amplitude limit, 
be of no higher than the second differential order 
if difficulties with "ghosts," negative probabilities, 
and lack of unitarity are to be avoided. The problem 
of unitarity is a very difficult one in the general 
case and we shall have nothing very useful to say 
about it here. It is possible that the process of field 
measurement itself26 and the question of what 
variables are to be chosen as fundamental in the 
description of the field will in the end have to be 
studied in order to resolve this problem. 

6. r AND TOPOLOGY. GENERAL DISCUSSION 

It was pointed out in Sec. 2 that all physical 
processes can be computed from a knowledge of the 
vacuum-to-vacuum matrix elements of appropriate 
T functionals. These matrix elements can be ob
tained by multiplying corresponding Schwinger 
averages by the amplitude (0, <Xl I 0, - <Xl). Since 
the Schwinger averages can be expressed in terms 
of the correlation functions, and these in turn can 
be expressed in terms of the propagators and vertex 
functions, we see that the functional r by itself 
provides us with a complete quantum theory provided 
we can express (0, <Xl I 0, - <Xl) in terms of r . We 
now show how to do this. 

From Eqs. (4.1), (4.3), and (4.4) we have 

[;:] = [:~;:~:] = [~:: =~::][~::] (6.1) 

and hence 

2& For a preliminary analysis of the measurability of the 
quantized gravitational field see B. S. DeWitt, Gravitation, An 
Introduction to Current Research, edited by L. Witten (John 
Wiley &; Sons, Inc., New York, to be published), Chap. 8. 

[
G 'J [r .. r "j [ef/] .... = _ ,tl ,1J 

G. I r. i ; r.ij 1/1; 

= [r"j_ [(r.;rjJ~ + r.;1/I?"j, (6.2) 
r,l (r.;rjJ' + r,;1/IJ).1 

which may be integrated from the zero point and 
combined with Eq. (4.2) to give26 

(0, <Xl 10, - <Xl) = eiG
, (6.3) 

G = r - r,irjJk - r,i1/li - roo (6.4) 

The zero point is conventionally chosen to be that 
solution of the classical field equations which cor
responds to flat empty space-time.a This choice is 
not absolutely essential, and in some instances it 
may be desirable to generalize it. The quantum 
theory is basically a theory of small fluctuations 
about an arbitrary solution of the classical field 
equations, a fact which we have already emphasized 
in the arbitrariness of our choice of zero point for 
series expansions.19 For many purposes we may 
equally well regard such an arbitrary "background" 
solution as "the vacuum." 

Strictly speaking, since quantum effects (e.g., 
scattering of light by light) persist at large ampli
tudes even in the classical long-wavelength limit, 
the "background" field should be chosen as a solu
tion of the quantum equations (5.7) with sources 
absent. Now these equations, unlike their classical 
counterparts S., = 0, S.I = 0, have left-hand sides 
which become complex at thresholds for real particle 
production.27 However, macroscopic wave solutions 
of these equations may be chosen having imaginary 
components which are negligible and in some 
instances (e.g., smooth cosmological solutions in 
gravidynamics) even absent. The theory of the 
preceding sections may then be applied with this 
generalized concept of "vacuum," the Feynman 

16 In the case of a linear boson field, where 

S = r = !K,;(<I>i + <l>o')(<I>i + <1>0;), 

K'; being a constant symmetric kernel, we obtain the familiar 
result 

G= -!Ki,,,,,i<l>i = !GjGiiJ j, 

1(0,00 10, - (0)1 2 = e-ImJ,a'iJi 

where theta' are the orthogonal functions of Eqs. (6.5), (6.6), 
and (6.7). 

27 For massless fields this threshold occurs at zero fre
quency, and the complications of the infrared catastrophe 
have to be taken into account. 
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propagator being defined as that Green's function 
of the operator (5.22) which uniquely satisfies both 
(4.6) and (5.9). 

It is of interest, in particular, to see how S
matrix theory is developed within such a context. 
The procedure is a straightforward generalization 
of the methods of Lehmann, Symanzik, and Zimmer
mann.10 We give merely the results, restricting our
selves for simplicity to the case of boson fields only; 
A system of orthogonal complex functions f; is 
introduced satisfying the equations 

r.id~ = 0, (6.5) 

1m G,j = ! La (f ;t; + f ~t;), (6.6) 

and, in configuration space,28 

where the f~'j" are the analogs for the operator r ,ij 
of the functions introduced in Eq. (3.2) of (II) in 
connection with the Cauchy problem. The f; serve 
to define a representation in terms of initial and final 
states, in which the S-matrix elements themselves 
are given by 

(6.8) 

X (<<j»k' ••• «j»kM«j»I, ••• «j»1"> 

X r.ld, ... r,l.j.f~: ... f~:, (6.9) 

the notation of Eq. (6.8) being that of Nishijima.29 

For example, the amplitude for two-particle scatter
ing (omitting the no-scattering amplitudes and the 
amplitudes for particle production and absorption 
by the sources) becomes 

+ r,ik .. Gm"r,"iI + r,HmGm"r,,,jk)f;J~.. (6.10) 

In the context of gravitation theory the admissi
bility of arbitrary macroscopic background fields 
immediately implies also the admissibility of arbi
trary topology in the large. Perhaps more important 
than this, however, are the possibilities which the 
functional r opens up in regard to topology in the 
small. Let us suppose that after having computed 

28 The existence of such functions, with a positive definite 
Kronecker delta on the right of Eq. (6.7), depends on the 
ne!diJribilityof the imaginary part of r,iI and on the positive 
definIteness of the symmetric real matrix ImG'i' When these 
conditions are not satisfied negative probabilities and failure 
of unitarity occur. 

" K. Nishijima, Phys. Rev. 111, 995 (1958). 

r in terms of invariant variables we transform back 
to configuration space by reintroducing the in
variance group and the original dynamical variables 
of the theory. This we can easily do since the r 
language is a c-number language. Since r is an 
invariant the field equations r ,; = 0 for the original 
variables (in the absence of sources) are covariant 
equations. In the case of pure gravitation theory 
these equations have a local part identical with 
Einstein's equations and a nonlocal part, coming 
from the self-energy functional, which describes 
quantum corrections important at high energies and 
small distances. Now it is well known that Einstein's 
equations admit of solutions for which space-like 
cross sections have non-Euclidean topology, giving 
under certain conditions a particle-like or "worm
hole" structure to space itself.30 There are, however, 
strong reasons for believing that classical worm
holes are immutable, i.e., that the topology of 3-
space cannot change as long as the metric tensor 
satisfies Einstein's equations and retains its normal 
signature. On the other hand, with the equations 
r ,; = 0 the situation is quite different. In the 
first place the metric tensor in the r language is 
complex (it satisfies Feynman boundary conditions), 
and hence the question of signature loses its rigid 
classical significance. Secondly the r equations are 
nonlocal at small distances (ro.J 10-32 cm) and hence 
afford greater possibilities for real dynamical changes 
in 3-space topology. 

If no wormholes are initially present, of course, 
none are to be expected to develop in the course of 
time---provided no field quanta (represented as small
amplitude superpositions of the complex functions 
f;) are present either. The same should also be 
true for single wormholes. But in the case of two 
or more colliding wormholes it is likely that the 
real metric which describes them in the remote 
past acquires complex components (corresponding 
to final gravitons) in the course of time, while the 
wormholes themselves either bounce inelastically or, 
under suitable phase relationships, annihilate one 
another. 

Since possibilities of this kind were not antici
pated in the original formulation of the theory 
several questions immediately arise. For example, 
how is the Feynman functional integral to be under
stood under these circumstances? The choice of 
numerical range for the continuous labels i, i, which 
is essential for the definition of the functional volume 
element, depends critically on the topology assumed 

30 C. W. Misner and J. A. Wheeler, Ann. Phys. (New 
York) 2,525 (1957). 
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for space-time. Now that many topologies are pos
sible, how are we to interpret them? Must we sum 
over topologies as well as histories in the Feynman 
integral, thus giving rise to a kind of third quantiza
tiM, with amplitude for each topology sequence?31 

Of course these questions become empty if, as 
is quite possible, field nonlocality occurs by some 
other presently unaccounted for mechanism already 
at a higher level (Le., anywhere between 10-32 and 
10-13 cm). Furthermore, although it would seem 
very interesting to attempt at least a lowest order 
calculation of the radiative corrections to the 
classical field equations, and then to see what effect 
these corrections have on the Schwarzschild solution 
and on the two-wormhole problem, serious questions 
would unfortunately have to be raised in regard 
to the significance of such a calculation, even 
assuming the underlying theory to be correct. 

In the first place there is a rather uncomfortable 
situation in regard to the divergences. Owing to 
the special nature of gravitational coupling, whereby 
the insertion of a bare vertex prong at any point 
in any diagram leaves the degree of divergence of 
the diagram unaffected (p2 behavior of the vertex, 
l/p2 behavior of the extra bare propagator) all the 
full vertex functions have the same asymptotic 
momentum-space behavior as the operator r .ii, 
and hence all the self-energy diagrams diverge at 
least quartically. If the asymptotic behavior of r .ij 
is assumed to be such as to maintain consistency 
in a perturbation calculation to any finite order, 
it is easy to see that all diagrams diverge exactly 
quartically, and that this asymptotic behavior must 

31 As Wheeler has emphasized [J. A. Wheeler, Ann. Phys. 
(New York) 2, 604 (1957») the wormholes envisaged here, 
having the excessively large mass (,...., 3 X lO-Sg) associated 
with lO-32cm, are not to be confused with observed elementary 
particles, and hence the quantum theory of gravitation does 
not immediately obviate the necessity of introducing extra 
fields ab initio to rcpresent matter. In this connection it is 
worth observing that only a small fraction of all topologies 
have a simple particle-like character. Moreover, enthusiasm 
for topological dynamics is dampened by the observation 
that topological flexibility can actually undermine the 
experimentally observed dimensionality of macroscopic 
space-time. This is most simply seen by thinking of a close
spaced rectangular lattice of solid rods in three dimensions, 
which is dipped in a rubber cement solution and then allowed 
to dry. If the rods are somehow dissolved by immersion in 
another solution, leaving only the thin rubber coating, we 
have a model of a mathematically two-dimensional space, the 
gravity waves (membrane vibrations) of which require three 
dimensions for any sort of simple physical description. This 
sort of disaster can obviously proceed ad dimensionem in
finitum. 

be p4 (or p4 In Ip21) after subtraction of divergences. 
Unfortunately the assumption is a dubious one 
because there is no evidence at all that the re
normalized perturbation series converges nor, a 
fortiori, that the sum of the series has the same 
asymptotic behavior as the individual terms. The 
trouble is that there exists no small dimensionless 
coupling constant in the theory of the pure gravi
tational field, nor in the theory of the combined 
Einstein-Maxwell field. When natural units are used 
in which h = () = 1611"G = 1, no physical constants 
are left, and all diagrams begin to diverge equally 
at 10-32 cm, and have roughly equal magnitudes 
after renormalization. 

Moreover, if the asymptotic behavior really is p4 
then we are faced with the unpleasant fact that one 
counter term beyond the classical Einsteinian term 
is needed to effect the renormalization of every 
diagram.32 Such a counter term corresponds to an 
initial classical theory having field equations of the 
fourth differential order, with corresponding compli
cations in regard to unitarity. Of course, one might 
argue that this counter term precisely cancels a pre
existing one in S, leaving no term of the unwanted 
type in the "observed" classical action SR, and 
indeed such a proposal has some merit. The p4 be
havior would then mean that the singularities of 
the propagators on the light cone have been softened 
without obvious violation of unitarity, and that 
although divergences are not eliminated, quantum 
gravidynamics does partially live up to its initial 
expectations of providing a natural cutoff in momen
tum space. It is worth pointing out that, unlike the 
situation in other field theories, this would not imply 
a violation of Lehmann's theorem,33 for one of the 
assumptions of that theorem, namely, the existence 
of an energy-momentum 4-vector which generates 
infinitesimal displacements of local quantities with 
respect to the (nonintrinsic) coordinates xl', fails 
to hold in gravidynamics. 

32 In general three counter terms are needed: (1) a quar
tically divergent cosmological term to compensate the zero 
point vacuum energy; (2) a quadratically divergent Ein
steinian term, which renormalizes the gravitation constant; 
(3) a term quadratic in the Riemann tensor involving two 
independent logarithmically divergent constants which have 
no counter parts in the classical theory. [Compare with R. 
Utiyama and B. S. DeWitt, J. Math. Phys. 3 608, (1962). 
Also lectures given by R. P. Feynman at the New York 
meeting of the American Physical Society in January 1961.) 

33 H. Lehmann, Nuovo cimento 11, 342 (1954). 
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The gauge covariant formulation of quantum electrodynamics given by Zumino is further investi
gated. The method used is that of functional integration. This allows for a slight generalization of 
Zumino's results and provides a direct relation between the gauge condition in classical and quantum 
theories. All results are derived without any reference to the canonical formalism. The same procedure 
can be applied to the Yang-Mills field with or without a mass, leading in both cases to a renormalizable 
theory. The Landau gauge is studied in some detail and it is shown that in the perturbation expansion 
of the propagators no terms violating the gauge invariance appear. Finally, a new interpretation of 
the generalized Ward identity is proposed. 

1. INTRODUCTION 

AN exhaustive discussion of the gauge proper
ties of Green's functions was given recently 

in a very interesting paper by Zumino. l With the 
use of the functional differentiation method2 he 
exhibited the transformation properties of Green's 
functions under various kinds of gauge transforma
tions. In our opinion, however, there is one point 
that needs further clarification. It is the connection 
between the gauge conditions in classical and 
quantum electrodynamics. Such a connection is 
provided in this paper. Also, a slight generalization 
of Zumino's results is given and his rather heuristic 
procedure is justified. Finally, the formulation of 
quantum electrodynamics in the Landau gauge3 is 
studied in some detail. The set of Schwinger's equa
tions for the electron and photon propagators is 
derived and it is shown that there are no terms 
violating the gauge invariance. 

To classify the gauge conditions in quantum 
electrodynamics Zumino introduced4 a vector opera
tor a" and a gauge function A. The vector a" was 
introduced first in a special form (in the Coulomb 
gauge) and then the resulting equations for the 
functional Z were postulated to be valid for a large 
class of a,.'s. 

In the present paper a different method of ob
taining the set of gauge covariant equations for 
propagators is proposed. It is based on the technique 
of integration over all fields. This method E'eems to 

* Preliminary accounts of this work were given in the Bull. 
Acad. Polon. Sci. C1. III 10, 225 (1962). 

1 B. Zuminol J. Math. Phys. 1, 1 (1960). In the following 
this paper will De referred to 88 A. 

I The same method has been applied independently but 
m.'-lCh less succe~sfully by the present author [1. Bialynicki
Buula, Nuovo Clmento 17, 961 (1960)]. 

3 As is shown in this paper the Landau gauge is essentially 
the Lorentz gauge of the classical theory. 

• The additional function M introduced by Zumino will be 
discussed later. 

be most suitable in dealing with theories invariant 
under continuous groups of transformations. With 
its help one can quantize not only electrodynamics 
but also the Yang-Mills field and general relativity 
in the linear approximation.5 The Yang-Mills field 
with a mass can be quantized in practically the 
same manner as quantum electrodynamics. It will 
lead to a renormalizable theory.6 

2. CLASSICAL ELECTRODYNAMICS 

In classical electrodynamics there is a freedom in 
choosing the vector potential A" to represent a 
given field I,.,. This freedom allows to perform a 
gauge transformation, 

'A,. = A,. + x.,,, (1) 

without affecting the field I,., = A,." - A",.. In 
some cases it is convenient to restrict the freedom 
by imposing certain conditions on the potentials. 
These gauge conditions will be assumed to be linear 
in A,.. The most general linear gauge condition can 
be written in the symbolic form 

(2) 

which stands for 

f b,.{x, x') dx' A"(x') = K(X). (3) 

All gauge conditions having use in electrodynamics 
can be cast into this form. There is one condition 
which must be satisfied by the vector operator b,. to 

6 One can quantize formally even the exact version of 
general relativity. Resulting equations will bc similar to those 
proposed by Klauder [J. R. Klauder, Nuovo cimento 19, 1059 
(1961); (to be published)]. Such a procedure is open, however, 
to many doubts [C. W. Misner, Revs. Modern Phys. 29, 497 
(1957)]. 

6 The renormalizability follows from the absence of the 
p.-2 iJ"iJ. term in the propagator. This term is replaced by 
0-1 iJ"iJ •• 

1094 
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guarantee that every field can be represented by 
the potential obeying (2). This condition is that 
the operator b"a" has an inverse. Otherwise it 
would not be possible, in general, to find a gauge 
transformation (1) which transforms A" into 'A" 
satisfying (2). Assuming the existence of the opera
tor (b" 0")-" the condition (2) can be written in 
the form 

a"A" + A = 0, (4) 
where 

a,,(x, x') -I (b, O')-l(X, x") dx"b,,(x", x') (5) 

so that a" satisfies the condition 

a,.(x, x') 0" = -o(x - x'). (6) 

With such a normalization of the gauge condition 
two potentials related through the transformation (1) 
satisfy condition (4) with two A's differing just by 
the gauge function x, i.e., 

'A = A + x. (7) 

An important claSR of gauge conditions obtains 
when a" is chosen in the form 

a = 
" 

n,.(n·o) - pa" 
(n·a)2 - pO ' 

(8) 

where nIl is a unit vector lying in the forward light 
cone and p is a real parameter. The three most 
frequently used gauge conditions 

divA = 0, and A"." = ° (9) 

imposed in an arbitrary coordinate frame belong to 
the class (8) with p taking on values 0, 1, and CD. 

3. QUANTUM ELECTRODYNAMICS 

The first complete gauge covariant version of 
quantum electrodynamics was given by Zumino 
in A and very little will be added here as far as the 
form of the Green's functions in different gauges is 
concerned. We shall try, however, to clarify the 
role of the classical gauge condition in the quantum 
theory. 

The vector a" was introduced in A at first "for 
the sake of concise notation" in the Coulomb gauge 
and the generalization7 to other cases was made 
rather arbitrarily without referring to any gauge 
conditions for the potentials. It will be shown below 
that this vector a" is substantially the same as the 
one introduced in Sec. 2 in classical theory. To this 
end the generating functional Z will be written as 

7 This part of Zumino's considerations we had in mind 
calling his procedure heuristic in the Introduction. 

an integral over all fields, 

Z{:l,., A, fl, iiI = N-1 I o,A" 01/1 oi{t 

X exp [i I (£ + i{tfl + iil/l + :l"A") ax J, (10) 

where 

£ = -tl",!", + i{t(i iJ - m)I/I + j"A". 

This expression differs from what has been custo
marily assumed! in having the integration over all 
potentials replaced by the integration over potentials 
restricted by the gauge condition (4). This re
striction, indicated in (10) by the index g, makes Z 
a functional of A. Such a procedure seems to be in 
agreement with the concept of the Feynman integral 
over all histories. Every history should be counted 
once and this corresponds to integrating over all 
potentials with the additional condition (4). There 
are several objections which might be raised in 
connection with the integrals over all fields. It 
will be, however, quite sufficient for our purposes 
to treat them quite formally (in the spirit of Sy
manzik's paper9) without going more deeply into 
the question of their evaluation, etc. 

In what follows only three, very general, proper
ties of such integrals will be needed. 

I. The integrals over all fields allow for an 
integration by parts, i.e., 

(11) 

II. The functional differentiation can be inter
changed with the functional integration, for 
example, 

[ &P~x) I o~F{~1 exp [i I I(J~ ax ] 

= I o~ ~(x)F{~1 exp [i J I(J~ ax 1 (12) 

III. The origin in the space of all functions can 
be freely shifted i.e. 

I o~G{~1 = I OAG{~ + "I· (13) 

The symbol o,A" introduced in (10) can be given 
a precise meaning with the help of the functional 
o function, 

8 B. Laurent, Nuovo cimento 4, 1445 (1956). N. N. 
Bogoliubov and D. V. Shirkov, Introduction to the Th«Jry 
of Quantized Fields (Interscience Publishers, Ine., New 
York, 1959). A. Visconti and H. Umezawa, Compt. rend. 
252, 1910 (1961). 

• K. Symanzik, Z. N aturforsch. 9, 809 (1954). 
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o(apAP + A) 

= J oX exp [i J X(apAP + A) dxJ ' (14) 

where the factors (2'11-)-1/2 have been absorbed9 into 
the symbol oX. The functional Z can be written 
then as an integral over all fields Ap and an additional 
field A, 

Z{:Jp, A, 71, iiI = N-' J oAp oX ol{! oif; 

X exp [i J (.c + il-71 + iiI{! 

+ :JpA" + XapA P + XA) dxJ. (15) 

It is now a matter of very simple calculations, 
making use of the properties I and II, to show that 
Z obeys the following set of equations in the func
tional derivatives. 

(16) 

[ -i a + m + e-l ~ ~J ~ ~ Z = 71Z 
z o:JP Z 071 ' 

(17) 

Z{:Jp, A, 71, iiI = N~' J ol{! oil-

X exp {i J [iI-(i a - m)1{! + il-71 

+ ill{! - oP(3" + jp)A] dX} 

X exp [~ J (0; - ii" 0')(3. + j.) 

X DF(O~ - ii" ox)(:Jx + l) dx dx' J. (23) 

In the preceding discussion no mention was made 
of the function M introduced by Zumino in A. It 
can, however, be easily included into our formalism 
by replacing the 0 functional (14) by a more general 
functional CP, 

cp(a"A" + A) = J oX exp [ -(i/2) J XMA dx dX'] 

X exp [i J X(apA" + A) dxJ . (24) 

The functional cp represents a model of the 0 func
tional. The symmetric kernel M (x, x') describes the 
spread of the quantity a"A" around the value A. 
The replacement of (14) by (24) in (15) leads to 

~ .i. [+i a + m + e'YP ~ ~Jz = iiZ, 
Z 071 Z 0:J" (18) Z{3", A, M, 71, ill = N-' J oA" oX ol{! oil-

( ap ~ ~ + A)Z = 0 
Z 0:J" ' 

(19) 

where a" stands for the transpose of a", i.e., 

(aJ)(x') == J f(x)a/x, x') dx. (20) 

As a result of (6) the transposed operator fip satis
fies the condit.ion 

o"a" = 1. 

This condition, together with Eqs. (16), (17) 
(18), leads to the additional equation, 

! ~ Z = (-:J" + e.i. 71 - e71- .i.)z i OA ,p 071 oii' 

(21) 

and 

(22) 

which could be used to eliminate oZ/OA from Eq. 
(16). Eqs. (16) to (19) coincide with Zumino's equa
tions only for a restricted class of a/s, namely for 
a" = - a". Although Zumino did not mention this 
condition his examples do satisfy it. The property 
III of functional integrals makes it possible to 
obtain a more explicit form of the integral (10), 

X exp ( -(i/2) J XMX dx dX') 

X exp [i J (.c + il-71 + iiI{! 

+ 3"A" + Xa"A" + XA) dxJ. (25) 

After the integration over A" and X one obtains 

Z{3p, A, M, 71, iiI = N;' J ol{! oil

X exp {i .r [iI-(i a - m)1{! + il-71 

+ ill{! - o"(:Jp + j,,)A] dX} 

X exp {~ J [(0; - iip oV)(3. + j.) 

X DF(O~ - ii" ov)(3x + l) 

- 0"(3" + jp)M oV(3. + i.)] dx dX} (26) 
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This is in full agreement with the formula (A6) of 
A. Expression (25) allows us to write a set of equa
tions for Z in the presence of M. Eqs. (16), (17), 
and (18) remain unchanged and Eq. (19) takes on 
the form 

[ 
15 1'1 5 ] M"7 'A + a "7 - + A Z = o. 
~ u ~ 5::11' 

(27) 

The generalization to nonvanishing M's has no 
interpretation in terms of classical fields and po
tentials. It corresponds to the introduction of a 
new field >.. with the !>..M>.. playing role of a non
local Lagrangian. From this point of view the 
Landau or the radiation gauge are much more 
natural than the Feynman gauge. 

Having at our disposal the closed expression (25) 
for Z we can easily derive the formula connecting 
two Z's in different gauges, 

Z{::I, A + 5A, M + 5M, al' + 5a", '11, 7i! 

= exp (i J 5A T 5~ dX) 

X exp ( -~ J T 5~ 5M T 5~ dx dX') 

(28) 

This formula holds for finite changes of A a and , '" 
M and we can derive from it the transformation 
properties of all Green's functions under arbitrary 
changes of A, a", and M. 

4. EQUATIONS FOR ONE ELECTRON AND ONE 
PHOTON PROPAGATORS 

To obtain an explicitly Lorentz invariant form 
of quantum electrodynamics we choose in this 
section a" to be a Lorentz invariant operator, 

(29) 

We put also M = 0 to be as close as possible to the 
classical electrodynamics. As shown in the Ap
pendix, the electron and the photon propagators and 
the vertex function satisfy the following set of 
integral equations. 

DrG(x - y) = 5(x - y) - ie2'Y" J G(x - x') dx' 

X r'(x', y', z) dy'G(y' - y) dZSI"(x - z), (30) 

og".(z - z') = -(gIl' - a" a,o-l) 5(z - z') 

+ ie2 Tr J 'Y"G(z - x) dxr~(x, y, z") dy 

X G(y - z) dz"gA,(Z" - z') (31) 

i a,r'(x, y, z) = 5(z - x)G-1(z - y) 

- 5(z - y)G-1(x - z). (32) 

These equations differ from those derived by 
Schwinger10 in yielding automatically a purely 
transverse photon propagator, 

(33) 

This transversality condition had usually to be 
added from outside and contradicts the results 
obtained in the perturbation theory. Nothing of 
that kind will occur in our formalism. The photon 
self-mass, appearing in the perturbation theory 
does not violate the condition (33) and can be 
eliminated by the standard renormalization pro
cedure. 

There is one more property of our formulation 
which seems to be of some importance. Due to the 
property (33) of gm the longitudinal part of the 
vertex function does not enter into equations for the 
propagators. This can be easily seen in the simplest 
case of equations for the electron and photon propa
gators and can be shown to be valid in the general 
case. The only equation involving the longitudinal 
part of the vertex function is the generalized Ward 
identity (32) and, therefore, this identity may serve 
as a definition of this part. Computing the physical 
properties of any system containing electrons and 
photons one is never forced to consider the longitudi
nal part of r,.. It was to be expected since this part 
describes the interaction of an electron with un
physical photons. 
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APPENDIX 

We adopt the usual definitions of the electron 
and the photon propagators in the presence of 
external sources ::I" and A, 

(AI) 

(A2) 

10 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452, 455 
(1951). 
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where 

and 

I. BIALYNICKI-BIRULA 

equations for alA 

L = Z{~I'I A, 7J = 0,71 = OJ (A3) o'(o.a..(z) - ojJa.(z» 

+ (0; - ill' o')~,(z) - ie Tr 'YI'G(z, z) = 0, 

(A4) al'al'(z) + A(z) = o. 
(AS) 

(A9) 

Equation (17) differentiated with respect to 11 gives 
It is convenient to introduce also the expectation the equation for G in the form 
value of A in analogy to the expectation value of [ -i iJ + m + e-yllall(x)]G(x, y) 
All' It will be denoted by K and defined as 

(~ L-11 oL 
K,Z, = i OA(z) . (A5) 

All functionals of :ijl and A can be expressed in terms 
of Aji and K. The derivatives with respect to ~jI and 
A are related to those with respect to ajl and K 

through the formulas 

(A6) 

= o(x - y) - e-yl' ~ _0 - G(x y). (AI0) 
'/. O~II(X) , 

To obtain from (AS) to (AlO) the Eqs. (30), (31), 
and (33), we have to differentiate (AS) and (A9) 
with respect to ~" make use of the formulas 

r,,(x,y,z) = ~ oa~(z) G-1(x,y), 

o 
o/C(z) G(x, y) = 0, 

(AU) 

o ° OA(z) = -o~ oax(z)' (A7) and finally put all = 0 = /c. The generalized Ward 
identity (32) directly follows from Eq. (22), differ

Equations (16), (22), and (19) lead to the following entiated with respect to 7J and 71, and from (A7). 
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The fourth-order Feynman amplitude ceases to satisfy the Mandelstam representation WRen the 
external masses are sufficiently large. A representation which replaces the Mandelstam one is found 
in the cases where the four mass invariants are equal in pairs. The physical interpretation is briefly dis
cussed. 

1. INTRODUCTION 

WE shall be concerned with the partial Feynman 
amplitude associated with the fourth-order 

diagram shown in Fig. 1. It is known1
•
2 that this 

amplitude ceases to satisfy the Mandelstam repre
sentation for a certain set of values of the external 
masses. If we set 

1 S. Mandelstam, Phys. Rev. 115, 1741 (1959). 
J J. Tarski, J. Math. Phys. 1, 149 (1960). 

with P13 = P12 + P23 and P24 = P23 + P34, the 
stability conditions on the external and internal 
masses are given by 

-1 < Yl2, Y23, Y34, Y41 < + 1 

so that for these V's we may put Yii = cos 8H • 

o < 8H < 7r. The condition for the validity of the 
Mandelstam representation is then given by 

012 + 023 + 034 + 841 ~ 27r. 
When the above inequality ceases to be valid, the 
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amplitude A(YI3, Y24) has singularities for complex 
values of Y13, Y24 in the physical sheets for these 
variables and this precludes the possibility of a 
representation such as Mandelstam's. Our objective 
is to find a representation for A(YI3, Y2.) when it 
has complex singularities, in the special case when 
the four invariants Yl2, Y23, Y3., Y.I are set equal 
in pairs. We find this representation with the aid 
of the Bergman-W eil formula. 

2. THE BERGMAN-WElL FORMULA' 

This formula is a generalization of Cauchy's 
formula and gives the values of a function of several 
complex variables in its domain of analyticity in 
terms of its values on a certain subset of the bound
ary of this domain, when the boundary consists 
of pieces of analytic hypersurfaces. An analytic 
hypersurface is a surface of the form F(zk, r) = 0, 
where F is analytic in the complex variables Zk 
and r is a real parameter varying over a certain 
interval. For the case of two complex variables, 
which is the relevant one here, we have, explicitly 

A(zl, Z2) = II dtl dt2A(tl, t2) Iq(zl, Z2, tl, t2)1· 

Here the integration is over the distinguished bound
ary of the domain of analyticity, which is defined 
as the two dimensional intersections of the analytic 
hypersurfaces that form the boundary of this domain 
taken two at a time. The q factor in the integrand 
is a 2 X 2 determinant of certain functions qkl 
defined as follows: We associate two functions qil 
and qi2 functions of ZI, Z2, tl, and t2 with the kth 
analytic hypersurface such that these functions are 
analytic for ZI, Z2 lying inside the domain of ana
lyticity and for til t2 lying in the kth analytic 
hypersurface which forms a Dart of the boundary 

FIG. 1. Fourth
order Feynman 
diagram for scat
tering process. 

a See, for example, A. S. Wightman, Lea Houches Lecture 
Notes: Dispersion Relations and Elementary Particles, edited 
by C. R. De Witt and C. R. Omnes (John Wiley &: Sons, 
Inc., New York, 1959). Also G. Kall~n and J. Toll, Helv. 
Phys. Acta 33, 753 (1960). 

':2' + I 
r 
I 
I 
I 

1 

_________ ~~~~----~r_----------+I 

-I 

FIG. 2. The real plane when the mass invariants are equal. 

and such that the following identity is satisfied 

(tl - ZI)qkl + (t2 - Z2)qk2 = l. 
The q factor for the intersection of the kth and lth 
analytic hypersurfaces is then the 2 X 2 determinant 
of the q's associated with these two surfaces. Lastly, 
A(tl, t2) is the value of the function as th t2 ap
proach the distinguished boundary in some suitable 
manner. 

3. SINGULARITIES OF AWu, yu) 

The analytic properties of the amplitude associated 
with the above diagram have been worked out in 
detail by Tarski2 for general values of the internal 
and external masses. 

From continuity one can readily deduce these 
properties for degenerate cases. We shall first con
sider the case in which the four mass invariants are 
equal. We set 

812 = 823 = Oa. = On = </I 

and choose the masses such that cp > 11"/2, so that 
the amplitude has complex singularities. The ampli
tude in this case has anomalous threshold branch 
points at Y24 = cos 2cp, Y13 = cos 2cp in addition to 
the normal threshold ones at Y24 = -1, Yl3 = -l. 
It is also singular on the surface 

(Zl + I)(z2 + 1) = 4 cos2 </I. 

(We set Y24. = Zil YI3 = Z2)' This is essentially the 
complex surface joining the two branches of the 
hyperbola (Fig. 2). 

(Xl + I)(x2 + 1) = 4 cos2 </I. 
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Zo 
I 

y, 

FIG. 3. The Zl 
plane for a fixed 
complex value of Z2. 

Thus A (z.. Z2) has singularities in the physical 
sheets for Zl and Z2 which in this case are defined by 

-11" < arg (Zl - cos 24» < 11" 

-11" < arg (Z2 - cos 24» < 11". 

We can now enumerate the analytic hypersurfaces 
that form the boundary of the domain of ana
lyticity of A(ZI' Z2)' These are just the Zl cut, the 
Z2 cut, and the cut 

..:l(ZI, Z2) == (Zl + 1)(z2 + 1) - 4 cos2 tjJ = p, p ~ O. 

(We call this the ..:l cut.) It is necessary to introduce 
this cut as the singularity associated with the sur
face . ..:l = 0 is known to be of the square root type. 
This cut can of course be introduced arbitrarily 
but as we shall see the above choice is a convenient 
one. We note that since this cut introduces a two
sheeted surface in the Zl plane for a particular value 
of Z2, the definition of the physical sheet is ambig
uous, but the other singularities in the physical 
sheet are unambiguously determined. We merely 
choose a particular one of these sheets. 

4. THE BERGMAN-WElL INTEGRAL FOR A(ZI, Z2). 

We first determine the q's for the three cuts. 
For the Zl and Z2 cuts we take the sets [1/(!1 - Zl), 0] 
and [0, 1/(!2 - Z2)], respectively, as in Cauchy's 
formula. 

For the ..:l cut we see that ..:l(z .. Z2) ¢ p, p ~ 0 
as long as z .. Z2 lie inside the domain of analyticity. 
We may write 

1 == {..:l(ZI, Z2) - p} - {..:l(!l, !2) - p} 
..:l(ZI, Z2) - p 

_ ..:l(Zl! Z2) - ..:l(!I, !2) 
= ..:l(ZI, Z2) - P 

since ..:l(! .. !2) = p for !I, !2 lying in the ..:l cut. 
We now choose Q .. Q2 such that 

(!l - ZI)QI + (!2 - Z2)Q2 == ..:l(ZI' Z2) - ..:l(rl, !2)' 

Then the q's for the ..:l cut are given by 

qt.l = Ql/[..:l(ZI, Z2) - p], qt.2 = Q2/[..:l(Zl, Z2) - p], 

since then 

(rl - Zl)qt.l + (!2 - Z2)qt.2 = 1. 

We find 

QI = -l(r2 + Z2 + z) Q2 = -!(!l + Zl + 2). 

The p may be replaced by ..:l(! .. !2)' We thus have 
finally 

2(ZlZ2 + Zl + Z2 - rl!2 - !I - !2) , 

(!l + Zl + 2) 

We may remark that for a general analytic 
hypersurface the q's are not unique. For the ..:l 
cut the above q's seem to be the simplest ones. 

Next we determine the distinguished boundary 
of our domain. It consists of the intersections of 
the three cuts taken two at a time. There are thus 
three contributions to the Bergman-W eil integral, 
coming from Zl cut (\ Z2 cut, Zl cut (\ ..:l cut, and 
Z2 cut (\ ..:l cut, respectively. The first of these con
tributions corresponds to the Mandelstam represen
tation. The second intersection one would expect 
to be the region in the real plane between the 
branches of the hyperbola and left of the line 
Xl = cos 24>. But this region has a two-dimensional 
intersection with the Z2 cut, viz. the portion bounded 
by the lines Xl = cos 24>, X2 = cos 2tjJ and the lower 
branch of the hyperbola. We thus get a two-di
mensional region common to the three cuts whereas 
in general three analytic hypersurfaces (in two 
complex variables) should have a one-dimensional 
intersection. This discrepancy is got over by opening 
out the Zl and Z2 cuts slightly. 

Y, 

., 

8' 

(a) 

----------. •• ..--"'+ 
Cos2i 

Xa 

(b) 

FIG. 4. Plot of the t. cut on the Zl plane as Z2 varies along the 
Z2 cut. 
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We consider in detail the intersection between 
the Z2 cut and the Ll cut. This is done conveniently 
by plotting the intersection in the ZI plane. We 
note first that for a particular value of Z2, say z~, 
the ZI plane is as shown in Fig. 3. The Ll cut starts 
from z~ given by 

(z~ + l)(z~ + 1) = 4 cos2 cp 

and goes through the ZI cut at ZI = -1 so that 
only the portion L in the physical sheet is relevant. 
We now plot Z2 cut (\ Ll cut in the ZI plane. As Z2 

varies from - ex) to -1 - 0 Co small > 0) along 
Y2 = E, CE small> 0), i.e., from ~ to B (Fig. ~) the 
relevant portion of the intersection plotted III the 
z plane varies from A'X to B'X. The intersection 
i~ the surface swept out by the portion A'X going 
to B'X and gives merely the region Do of the real 
XIX2 plane as E -+ 0, approaching the ZI rea.! .axis 
from below. As Z2 goes round the little semIcIrcle 
from B to C (we take the semicircle for convenience), 
the intersection on the ZI plane swerves round from 
B'X to C'X, and as 22 goes from C to D we get 
the surface swept out by C/X going to D'X, which 
in the limit E -+ 0 is just the region D2 of the real 
plane, approaching the 21 real axis from below. 
For Z2 going round the branch point back to -: ex) 

slightly below the cut, we get the same reglons 
except that these approach the real ZI axis from 
above. This gives the complete intersection between 
the 22 cut and the Ll cut. In an analogous manner 
we obtain the third intersection. We can now write 
down the various contributions to the Bergman
Wei! integral. Taking account of the way t 1 and t 2 

approach the various parts of the distinguished 
boundary, one gets the following representation for 
A(zlJ Z2): 

fro o 2. dtl dS2P(SIS2) 
A(ZI, Z2) = l1-a> (SI - ZI)(t2 - 22) 

where 

+ ff {0'1(StS2)(SI + ZI + 2) 
JJ D. 2F(z, S)(SI - ZI) 

+ 0'2(tIS2)CS2 + Z2 + 2)} dtl dt2 
2F(z, t)(t2 - 22) 

+ l"r U(Slt2)(SI + ZI + 2) dS1 dS2 l D• 2F(2, t)(SI - ZI) 

+ rr U2(SIS2)(S2 + Z2 + 2) d
S1 

dS2 , 
lJn , 2F(2, SHS2 - Z2) 

P(tIS2) = lim {A(s~, s~) - A(s~, r;) 
- ACr~, s~) + A(s~, s"2)}, 

-I plane for 11 == 

f

YI 

FIG. 5. The %2 

- -----::::::=-+---t----..,!!o. flO + iE, where ~ I ?Xa flO < - 1 and E 

---- small > O. y' 
r. 

UI(rs) = lim {A(s~, s;-) - A(s~, s;+) 

- A(s~, s;-) + A(s~, s;+)}, 

and F(z, S) = (Z122 + ZI + Z2 - S1S2 - SI - S2)' 
The limit IA(s~, s;-) - A(s~, s;+)} represents 
the discontinuity of A(sl, S2) across the Ll cut, the 
first superscripts implying that SI is to approach 
the SI cut from above, in which case the Ll cut in 
the S2 plane lies below the S2 cut. The other limits 
are defined similarly. U2 is obtained from 0'1 by 
interchanging SI and S2' p(tl! S2) corresponds to 
the Mandelstam spectral function. The first inte
gral may, of course, be over a sma1ler region. 

S. DISPERSION RELATION FOR A(Zlo z.) 

For a particular value of 22 = z~, we obtain the 
following Cauchy representation for A(zl, Z2) (see 
Fig. 3): 

A( 0) = {jOOI2. + f } ACs:, z~) - ACr~, z~) ds . 
ZI, Z2J -"" JL CSI _ 2

1
) 1 

Thus for a particular value of 22 , we should be 
able to deduce the above relation from the Berman
Weil representation for A (211 Z2)' We proceed to 
obtain this relation. 

Let SI = s~ = r~ + iE where - co < s~ < -1. 
The A cut in the 22 plane then lies just below the 
Z2 cut as shown in Fig. 5. starting from t~ given by 

(s: + 1)(t~ + 1) = 4 cos2 cp. 

From Cauchy we get, using the same notation 
for limits as above: 

ACl-+ 0) _ f oo02
• {A(s~! s~) - A(s~, s;) I ds ~ , Z - _a> (S2 _ z~) 2 

f f.- A(r~! r;-) - A(r+ I r-+) 
+ -I (S2 - z~) dS2 ' 

We get similar relations for -1 < S~ < cos 2¢ 
and for s~ = s~ - iE. We now write the first term 
of the Bergman-Weil representation in the form 

f_
0",,012. drl [fOOl 2. d!;2 A(s~! S~) - ~(S~, S;) 

erl - ZI) -a> (S2 - Z2) 

_10002• A(s~! S~) - ~(s~, s;) d
S2

] 
-"" (S2 - Z2) 
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Rec.i 

FIG. 6. The real 
plane of the trans-

Re '1. formed variables w 
---"""'-0""'". ",",",,"':ki i~oo:r-+, ~-, *, ...,Ol ....... ~-+ and r,. 

and substitute for the two terms in the square 
bracket from the above relations. We get finally for 
the first term of the Bergman-Weil integral the 
expression 

~ 1, Z2 ~ 1, Z2 ds 1 f OOO 2<1> AC"+ 0) _ AC"- 0) 

-CD C\I - ZI) 

+ {lrr + for} UIa'I, rz) dSI drg . 
J D. J D. (ri - Zl)(r2 - Z2) 

Substituting this into the Bergman-Weil integral we 
get, since 

1 + (S 1 + ZI + 2) 
t\l - Zl)(S2 - zz) 2F(z, mSl - Zl) 

(S2 + Z2 + 2) 
2F(z, mS2 - Z2) , 

A(ZlZ~) = JC002

<1> d51 A(5~,zg) - A(5~,zg) 
-'" (51 - ZI) 

+ lor I U2(51, 52) - CTI(SI, 52) H52 + zg + 2) 
J D. 2F(z, m52 - z~) 

_ for d51 d52 CTI(SI, S2)(S2 + zg t 2) 
JD• 2F(z, mS2 - Z2) 

+ rr d51 dS
2 

CT2(SI, 52)(52 + Z~ t 2). 
JiD• 2F(z, r)(r2 - Z2) 

For the last three terms, we change the integration 
variables (SII s,) to (w, S2) where 

W = (SI + 1)(S2 + 1) - 4 col cpo 

A( 0) = JC082

</> dr A(r~, z~) - A(r~, zg) 
Zl, Z2 ~ 1 (r _ ) 

-CD ~l ~ 

The regions of integration in the real (w, S2) plane 
are as shown in Fig. 6. Then, noting that the 
Jacobian ofthe transformation is given by 1/ n-2 + 1) 
we get for the last three integrals, with F(z, r) 
w' - w, w' = (Zl + 1)(z2 + 1) - 4 cos2 cp, 

{fL. {CTz(rt(W), 52) - UI(SI(W), r2)} 

- fL. CTl(Mw), S2) + fL. CT2(~\(W), S2)} 

X (S2 + zg + 2) dw dr2 
2(w' - w)(52 + 1)(52 - z~) 

Jo dw [{J- l 

= ( I _ ) (ulrl(w), r2) 
-400811tIJ W W -co 

- UICtlCW), t2» + f'" (-Ul(tl(W), t2» 
",/(2 COli' t/J) +1 

JCOO 2<1> } (5 + ° + 2) ] 
+ -1 (12(51(W), 52) 2(51

2+ 1;<S2 _ Z~) d52 

Now the expressions (1(tl(W) , 52) - O{51 (w), 52), 
etc., contain terms in a symmetric way for which 
the limits w + and w - are to be taken. For a fixed 
value of w + = WO + ie, -4 cos2 cp < WO < 0, the 
singularities of A(Sl(W), r2) in the r2 plane are as 
shown in Fig. 7 where the two extra cuts are in 
fact parts of the r I cut for this fixed value of w. 
Thus the expression in the square brackets above 
is the Cauchy integral for A(SI(W), 52) in the S2 
variable for a fixed value of W with of course the 
kernel (52 + z~ + 2)/(\2 + 1). The integration over 
the 52 cut is given by the first part of the first inte
gral and the third integral in the square brackets 
above, whereas the integration over Sand T arise 
from the second part of the first integral and the 
second integral respectively. We may thus carry 
out the integration in the square brackets-for this 
we merely replace 52 by z~. We note that the kernel 
G'2+z~+2)/2(r2 + 1) cancels out. We obtain finally 

, A(W + + 4 cos
2 

cp _ 1 0) _ A(w -+ 4 C08
2 

cp _ 1 0) 
+ JO dw Z~ + 1 ' Z2 / Z~ + 1 ' ,Z2 

-4C08' q, W - W 

We put (w + 4 Cos2 cp)/(z~ + 1) - 1 = rl' Then 
dw/(w - w') = d51/(rl - ZI) and the limits are -1 
and 4 cos2 cp/(z~ + 1) - 1 = z~, Thus 

A( 0) _ f co
•

2
</> d" A(r~, z~) - A(s~, z~) 

ZI, Z2 - _CD H (rl - Zl) 

+ J". A(5~, z~) - A(5~, zg) drl 
-I (rl - Zl) 

This expression is the same as the one we obtained 
previously for A(zl, z~). 

It seems a bit surprising at first that the Bergman
Weil integral for A(Zl, zz) should contain integrations 
over the real plane only. This becomes somewhat 
clear if one considers analytic continuation in the 
external masses. to Let us consider the dispersion 

• See S. Mandelstam, Phys. Rev. Letters 4, 84 (1960). 
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relation for A(z17 Z2) for Z2 = z~ (complex) in the 
situation where there are no complex singularities. 
It is given by 

A( 0) - I-I A,(r" zg) d" Z" Z2 - ,. ~ ,. 
-a> ~,- Zl 

We continue this relation analytically in y, where 
Y = Yl2 = Y23 = Yu = Y4" For this we include a 
small imaginary part in y. When Y > 0, the singu
larities of A(Z" zg) are in the unphysical sheet and 
as Y varies from a value k, 0 < k < 1 to - k, the 
anomalous threshold and leading singularities move 
into the physical sheet as shown in Fig. 8, deforming 
the contour of the above integral with it so that 
finally we get the dispersion relation we obtained 
previously. In an analogous manner one can con
tinue the Mandelstam representation, deforming the 
two dimensional hypercontour as the complex singu
larities appear in the physical sheets for the two 
variables. In the first part of the Mandelstam 
representation, viz., 

If ds ds A(tlt2, y) 
_a> ' 2 Cr, - ZI)(r2 - Z2) , 

we see that it involves the values of A near the 
real SIS2 plane so that the corresponding leading 
singularities are on the unphysical sheet near the 
real plane. As y goes from k to - k, with a small 
imaginary part, these singularities" graze" along the 
real plane, go round -1 and back to their original 
position, deforming the hypercontour in the process, 
so that the deformed part lies also near the real 
plane. A detailed consideration shows that we get 
precisely the regions Do, D, and D2 for the deformed 
part. It is not straightforward, however, to get the 
exact representation by this process. 

6. UNEQUAL MASS INVARIANTS 

We now consider the cases in which the mass 
invariants are equal in pairs. The case 812 = 834 = q, 
and 823 = 841 = 1/1 is entirely analogous to the 
previous one, since here the Landau curve reduces 
to the surfaces 

r T 
if*e! -:-=--~ 

b hi 
~+I 

2Cos2(1 

FIG. 7. The z. plane for a fixed value of w. 

and 

FIG. 8. Path of 
the singularities in 
the Zl plane as the 
mass invariants in
crease. 

(ZI + 1)(Z2 + 1) = (cos q, + cos 1/1)\ 

(z, - 1)(Z2 - 1) = (cos q, - cos 1/1)2, 

of which only the former is singular when ¢ + 1/1 > 7r. 
We consider next the case 812 = 823 = q, and 834 = 
841 = 1/1. We describe briefly how in this case the 
singUlarities arise in the situation we are interested 
in. This is contained implicitly in Tarski's paper. 

Let q" 1/1 < 7r/2 and 1/1 > q,. There are then no 
anomalous thresholds or complex singularities in the 
physical sheet. The Landau curve is as shown in 
Fig. 9, being given by the line X 2 = 1 and the curve 

(Z2 + 1)(z~ - 1) - 4z, cos q, cos 1/1 

+ 2 cos2 
q, + 2 cos2 1/1 = O. 

Only the branch r, is singular in the limit (x, ± ie, 
k2 ± iE), so that the attached complex surface is 
not singular. The tangents to r 2 and ra are cos 2q, 
and cos 21/1, respectively. We now increase q, and 1/1 
such that 1/1 > q,. As 1/1 exceeds 7r /2, the line Z2 = 
cos 21/1 goes to -1 and recedes, thereby becoming 
singular and becoming tangent to r, instead of r 3 • 

Next we have q, + 1/1 = 7r. Here the lines Z2 = cos 2q" 

Z2 = cos 21/1, and Zl = -1, Zl = cos (q, + 1/1) coincide, 
while r, and r 2 together form a branch of a hyper
bola and the line Zl = -1. Beyond this point the 
line Zl = cos (q, + 1/1) becomes singular, the tangents 
to r, and r 2 are exchanged and we have complex 
singularities in the physical sheet-being essentially 
the complex surface joining the portion of r 1 with 
negative slope to the similar portion of r 2 • As q, 
crosses 7r /2 we have again the situation depicted 
in the figure. Here in addition Z2 = cos 2q, is singular 
and so is the complex surface joining r 1 to the 
portion of ra with negative slope. We now find a 
representation for A(Zh Z2) in this situation-we 
can compare it readily with the previous case by 
setting q, = 1/1. 

H we solve for z, the equation to the Landau 
curve we get 

2 cos q, cos 1/1 ± [(Z2 - cos 2q,)(Z2 - cos 21/1)]112 
Zl = (Z2 + 1) • 

For any Z2 only one of these values of z, gives a 
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+1 

-------f~~--~----~~--------+t 

Cos 2'1' _ __ _ 

FIG. 9. The Landau curve when 812 = 823, 834 = 8.1• 

singularity. It can be verified that the sign which 
gives - (Z2 - cos 2¢) in the limit ¢ ---+ I/; is the one 
yielding a singularity. Thus the relevant portion of 
the surface may be taken as 

ZI(Z2 + 1) + {(Z2 - cos U)(Z2 - cos 21/;) )1/2 

- 2 coscp cos I/; == A'(zl, Z2) = o. 
We note that in the above expression for ZI if we 
set cp = I/; we get the singular surface as 

ZI = 4 cos2 ¢/(Z2 + 1) - 1, 

and the nonsingular one as Zl = 1. This was so in 
the case considered first. 

The q's may then be taken as 

q"'i = Q;/[A'(zl,z2) - A'(tl, t2)], i = 1,2. 

We note that these q's reduce to those of the first 
case when cp = 1/;. 

Next we determine the distinguished boundary. 
We note first that the part of the real plane for 
which A'(zl, Z2) is negative consists of the region 
between r l and parts of r 2 and ra with negative 
slope, excluding the strip Z2 = cos 2cp, cos 21/;, where 
A/(Zl' Z2) is imaginary. We thus expect the con
tribution to the distinguished boundary from the 
A' cut to be contained in this region, with perhaps 
additional complex surfaces. We determine first the 
intersection between the portion of the Z2 cut below 
Z2 == cos 2cp and the Af cut. For Z2 = x~ + iE, X~ < 
cos 2cp, the Af cut lies slightly below or above the 
real Zl axis according as E > 0 or < O. This is to be 
expected as 1m Zl and 1m Z2 must have opposite 
signs for a singularity. As before only the portion 
of the Af cut in the physical sheet is relevant. It 
can be verified that for any Z2 = x~ + iE, X~ < cos 21/;, 
the A' cut passes through the Zl cut, though not 
through Zl = -1 as in the previous case. The exact 
form of this part of the distinguished boundary is 
obtained by determining the point, for any given 
x~, at which the Af cut crosses the Zl cut in the limit 
E ---+ O. This can be done readily. For Z2 = X2 + it, 
the A' cut is given by 

Zl(X2 + iE + 1) + [(X2 + iE - cos U) 

X (X2 + iE - cos 21/;)]112 - 2 cos cp cos I/; = p. 

Expanding the square root term in E, setting 1m 
ZI = 0 and subsequently equating the imaginary 
parts we obtain We now determine the q's for the new surface

taking the usual sets for the ZI and Z2 cuts. As before 
we introduce the cut 2xl [(X2 - cos 2cp)(X2 - cos 21/;)]1/2 

To determine the q's we have merely to find Ql and 
Q2 such that 

A'(Zl, Z2) - A'Crl, r2) == Crl - Zl)QI + Cr2 - Z2)Q2 • 

Here (tit t2) lies in the cut and (ZI! Z2) does not. 
We find QI = -l(t2 + Z2 + z) and, 

Q __ ! { + + 2(t2 + Z2 - cos 2cp - cos 21/;)} 
2 - 2 tl ZI N ' 

where 

N = [(Z2 - cos 2cp)(Z2 - cos 21/;)r /2 

+ [(t2 - cos U)(t2 - cos 21/;)]1/2• 

+ 2X2 - cos U - cos 21/; = O. 

Thus this part of the distinguished boundary con
sists of the region in the real plane bounded by a 
part of the above curve (the dotted curve in Fig. 9), 
the relevant portion of the Landau curve and the 
lines Z2 = cos 2cp, -1, i.e., the regions D~ and D: 
in Fig. 9. We note that for cp = I/; the above curve 
reduces to XI = -1 so that D~ and D: reduce to 
Do and Dz of the previous case. The intersection 

Cos III 
Cos'fi 

\ 
\. 
"'- .--' 

FIG. 10. Plot of 
the Af cut in the 

x I 21 plane for cos2q. 
~ 22 ~ cos2",. 
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d 

N 

between the fl.' cut and the portion cos 2¢ :::; Z2 :::; 

cos 21/1 of the Z2 cut does not lie in the real plane as 
we get complex values of Zl for real Z2 Csee Fig. 10). 
As Z2 goes from cos 2¢ to cos 21/1 slightly above 
the cut, Zl goes from cos I/I/cos tP to cos tP/cos 1/1 
along the lower semicircle and for Z2 going back 
below the cut Zl traces the upper semicircle. The 
fl.' cut is here parallel to the Zl cut in the limit 
E -+ 0, starting from a ZIon the circle and going 
towards - co. The distinguished boundary is thus 
the complex surface swept out by this cut as Z2 

goes from cos 2¢ to cos 21/1 and back, i.e., as Zl goes 
round the circle. We call this surface 2:. 

For the intersection between the Zl cut and the 
fl.' cut we note that for a given Zl the fl.' cut in the 
Z2 plane passes through Z2 = -1. A detailed con
sideration shows that this part of the distinguished 
boundary lies in the real plane consisting of the 
region bounded by r 2 , Zl = -1, cos (tP + 1/1) and 
Z2 = -1, excluding the rectangular bit Z2 = cos 2¢, 
cos 21/1 (the region D~ in Fig. 9) and the region 
bounded by r l, Zl = -1, Z2 = -1, Le., a region 
similar to Do of the first case. These regions reduce 
to DI and Do of the previous case when tP = 1/1. 

We can now write down the Bergman-Weil inte
gral for A (Zl, Z2): 

iI
e08 21/- 008 <.+1/-) p'C"" ) = li, )2 dI'l dI'2 

A(Zl, Z2) _00 (I'l - ZI)(I'2 - Z2) 

+ rr O"CI'l! I'2)qll.'2 dI'1 dI'2 

JJD"+D. (I'l - Zl) 

+ f'r T'CI'l, I'2)qll.'l dI'1 dI'2. 

JDs '+ D" U (I'a - Z2) 

The third portion of the last integral is over the 
complex surface 2:, p', 0", T' are the various dis
continuity functions obtained by considering the 
manner in which I'l, I' 2 approach the various parts 
of the distinguished boundary. 

A similar consideration to the above one may be 
applied to the situation where tP < 7r /2 and tP + 
1/1 > 7r. The case 812 = 814 and 823 = 834 is analogous 
to the above one with Zl and Z2 interchanged. 

n n 

FIG. 11. Diagrams sa.tisfying the 
modified Mandelstam representation. 

7. PHYSICAL INTERPRETATION 

In Fig. 11 are shown three of the diagrams which 
do not satisfy the Mandelstam representation. The 
first two belong to the first case and the third one 
belongs to the second case considered above (neglect
ing spins, etc.). One may ask for possible physical 
interpretation of the additional terms appearing in 
the representation. The physical significance of 
anomalous thresholds is well known. In the case 
of the third-order vertex function, for example, 
the presence of an anomalous threshold gives an 
extra term in the dispersion relation for this func
tion which can be interpreted, in the nonrelativistic 
limit, as "long-range" contributions due to bound 
structure effects.6 The terms other than the Mandel
starn one appearing in the above representation 
could thus be interpreted as a manifestation of the 
compound structure of the particles involved in the 
scattering. It is not clear if and how this connection 
can be made precise. It seems to be of some interest 
to see what the dispersion relation for a fixed 
physical value of one of the variables looks like. 
In the case of equal external and equal internal 

4COS _-3 
)(a +, 

/ 

-I 

FIG. 12. The physica.! region in the equa.! mass case. 

Ii R. Oehme, Nuovo cimento 13, 778 (1959). 
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masses, the physical regions are as shown in Fig. 12 
(the shaded regions) so that for a· fixed value of 
the momentum transfer in the physical region we 
have the following dispersion relation: 

A(zlt) = f- I 
AI(tlt) dtl 

-a> (tl - ZI) 

+ fOOS 2<1> d
r l 

A
2
(t l t) fg(1) A 3(t l t) 

-I ~ (tl - ZI) + -I dtl (tl - ZI)' 

where get) = 4 cos2 rjJ/(t + 1) - 1 so that -1 < 
get) < cos 2rjJ for t > 1. Here AI! A 2 , and Aa are 
the relevant discontinuity functions. We thus get 
two extra contributions, rather similar to the case 
of the vertex function, except that the latter has 
no analogue of the third integral. One gets a similar 
dispersion relation in the case 812 = 823 , 834 = 8411 

except that the lower limit of the third integral 
is also a function of t and lies below - 1. We also 
write down a dispersion relation for a fixed value 
of the energy of the crossed channel, which in the 
notation of Sec. 1 is given by u = (P12 + P34)2. 
For the second diagram in Fig. 11 this would be 
the energy of the channel representing deuteron
deuteron scattering. The condition u = constant 
is equivalent to ZI + Z2 = constant, the physical 
values of u being given by ZI + Z2 2:: 2. For a fixed 
value ~ of (ZI + Z2) in this region we have the follow
ing dispersion relation in ZI: 

1<+1 fa 1<+1} d r + A~ + Aa + A~ ~ I , 

.- cos 2<1> -I b (tl - ZI) 

where a, b are the roots of 

x2 
- x~ - ~ - 1 + 4 cos2 rjJ = 0 

and are in fact the points at which the ~ cut starts 
in the physical sheet. We have -1 < a, b < + 1. 
The first, second, and third pairs of terms come 
from the normal and anomalous thresholds and the 
~ cut, respectively, the A's being the relevant dis
continuities. For rjJ -? 7r (i.e. for deuteron-deuteron 
scattering) and ~ -? 2 (onset of the physical region) 
we have a -? 1- and b -? 1 + so that the integrals 
extend over the entire real axis. 

Note added in proof. While this paper was being 
typed we received a paper by Fronsdal, Mahant
happa, and Norton 6 with work very similar to the 
first five sections above. 
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A construction of the retarded n-point functions of perturbation theory is given within the Leh
mann, Symanzik, and Zimmermann framework and without the specification of an interaction 
Lagrangian. An intermediate-state expansion of retarded functionals is employed to define a systematic 
Bet of equations representing approximations to the (integral) unitarity conditions; the requirement 
of symmetry of the n - 1 retarded coordinates of an n-point retarded function enters in an essential 
way. The class of solutions to these equations contains the renormalized perturbation theory retarded 
functions corresponding to local renormalizable Lagrangian interactions, as well as more singular 
functions corresponding to nonrenormalizable interactions; if the latter are excluded all the n-point 
functions may be successively determined to all orders in the renormalized coupling constants. The 
construction is explicitly performed for the first radiative corrections to the 2- and 3-point functions 
of a self-interacting neutral scalar boson field, yielding the finite renormalized results of perturbation 
theory. Similar but slightly singular results are quoted for the 11'-11' scattering amplitude. 

I. INTRODUCTION 

T HE first attempt to compute the renormalized 
perturbation expansions of field theory directly 

from the axioms and without a Lagrangian was 
was made by Lehmann, Symanzik, and Zimmer
mann l (LSZ) , who indicated a general method to 
be used for the construction of the time-ordered 
functions (equations of system A). More recently, 
this problem has been considered by Nishijima,2 

who showed that the connected time-ordered func
tions may be defined in perturbation theory with 
the aid of parametric dispersion relations.3 Nishi
jima also showed that symmetry difficulties ap
parently prevent the construction of the retarded 
functions directly from unitarity (with the excep
tion of the special case of quantum electrodynamics, 
to which the Ward-Takahashi restrictions are 
applicable). 

It will be demonstrated here that it is just the 
symmetry requirements on the retarded coordinates 
of every retarded n-point function which permit 
perturbative solutions to the unitarity equations to 
be unambiguously determined. However, the method 
of construction must be carried through step by step 
for sequences of retarded functions. A systematic 

* This research was supported in whole or in part by the 
U. S. Air Force under Grant No. AF-AFOSR-16-19 moni
tored by the Air Force Office of Scientific Research of the 
Air Research and Development Command. 

t Present address: Courant Institute of Mathematical 
Sciences, New York University, New York 3, New York. 

1 H. Lehmann, K. Symanzik, and W. Zimmermann, 
Nuovo cimento 1, 205 (1955). 

2 K. Nishijima, Phys. Rev. 119, 485 (1960). 
3 These relations have been shown to follow from the 

axioms only for the special case of decay processes, and must 
therefore be introduced into the formalism as a separate and 
essential postulate. See H. M. Fried and D. L. Pursey, Phys. 
Rev. 124, 1281 (1961). 

approximation scheme to the (integral) unitarity 
conditions is employed to generate a set of integral 
equations for the retarded functions. This expansion, 
essentially an intermediate-state approximation to 
unitarity, is defined independently of the existence 
of coupling constants or any perturbative phrase
ology; but the class of solutions to the equations so 
obtained contains the renormalized n-point func
tions of perturbation theory. In effect, and as in 
references 1 and 2, the approximate unitarity equa
tions replace the coupling between different Green's 
functions conventionally obtained in a Lagrangian 
theory. These equations also possess other more 
singular solutions corresponding to nonrenormaliz
able Lagrangian theories, which are to be excluded 
when calculating successively higher-order ampli
tudes. An explicit construction of the first radia:tive 
corrections to the 2- and 3-point retarded functions 
is carried out and shown to yield the finite, re
normalized results of Lagrangian perturbation 
theory for the simplest case of a self-interacting 
neutral scalar boson field. However, the 'lI"-'lI" scatter
ing amplitude constructed in this manner requires 
one subtraction. 

The basic axiomatic field theory postulates, 
fundamental to the LSZ formulation followed here 
will be adopted and collectively called assumption~ 
A. To these postulates will be added an additional 
assumption, condition B, which will serve to ex
clude nonrenormalizable interactions in the sense 
discussed above. The functional notation and 
formalism of Symanzik4 will be adhered to except 
for some trivial modifications. We therefore con-

, K. Symanzik, J. Math. Phys. 1,249 (1960). 
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sider a field operator A (x), corresponding to a 
stable particle of mass m, which possesses an asymp
totic limit (in the weak sense) Ain(x), and construct 
the time-ordered operator 

T = (exp [i f dxj(x) A (x) J) +' 

tion is symmetric in all n + 1 indices; the retarded 
function is symmetric in all nyex indices, none of 
which refer to a time coordinate later than xO. 

The basic statement of unitarity for the retarded 
functions is 

(4a) 

where functional differentiation lJT/lJj(x) is de- or 
noted by Tz • The process of amputation of a given 
coordinate will be defined by (R".~) = i8(xy)[(R,,), eD, (R.)] , (4b) 

T~ = 6T/oj(x) = KzT", 

where Kz = m2 
- Oz, For a general n-point func

tion this definition agrees with Symanzik's only on 
the mass shell of the corresponding Fourier mo
menta, but it is convenient to retain the same 
terminology. If S represents the unitary S matrix 
of the theory, the asymptotic condition takes the 
form 

ST = :exp (Ain 0/ oj): (T), 

where the double dots denote a Wick product, the 
bracket means vacuum expectation value, and the 
symbol Ain %j stands for the operator 

f duAin(U) oj~U)' 
The retarded functional operator may be defined 

as R., = -iT+T." and satisfies a similar asymp
totic condition, 

R" = :exp (A ln %j): (R z ). (1) 

Inversion of the defining equation for R., provides a 
relation useful in obtaining the time-ordered func
tions from the retarded functions, 

T., = iTR" , (2) 

or 

(T,,) = i(T)eD(R,,) , (3) 

where the symbol D represents the operator: 

. '8 (+)"8 • f d d '8 A (+)1. )"8 
1. oj .1 oj == t u V oj(u)'" ... u - v oj(v) ; 

this succinct way of representing the infinite sum 
over all the positive energy intermediate states 
implicit in Eq. (2) provides a convenient method of 
expressing the functional expansions to follow. The 
(n + I)-point functions (Tz.~, ... ~,>o and (R.,.~ •...• .>o 
are obtained by functional differentiation of (T.,) 
and (R,,); the subscript 0 indicates that the source 
j(z) has been set equal to zero after the differentia
tions have been performed. The time-ordered func-

where 8(xy) = 8(xo - yO) is the positive unit step 
function vanishing for negative values of its argu
ment, and the notation [A, eD, B] = AeDB - BeD A 
has been used. A distinction should be made be
tween this relation, here called integral unitarity,5 
and the conventional unitarity conditions obtained 
by calculating functional derivatives of the difference 
(R z .,) - (R •. ,,). The corresponding integral unitarity 
condition for the general function (Rz.~."'.'>o can 
be obtained by functional differentiation of Eq. 
(4b); symmetry of the nyex coordinates may be 
demonstrated by rewriting the result of such differ
entiation of Eq. (4a) in the form6 

Rz •• , .. ·.n = i" L: 8(XYl) 8(Yl, Y2) ... 8(Yn-lY,,) 
p 

x [ ... [[Rz , R • .], Ru.] .. 'J, RII.], (5) 

where L:p represents the sum over all permutations 
of the y .. coordinates. The functional expansions 
given below may be carried out starting from the 
vacuum expectation value of Eq. (5) rather than (4), 
but the forms obtained are unnecessarily compli
cated. 

n. LAGRANGIAN PERTURBATION THEORY 

Before proceeding with the details of the method 
it is worthwhile to indicate the motivation for the 
expansion contemplated and to define an appro
priate notation. All the various ways of defining 
perturbation expansions in a Lagrangian theory 
have as their common and essential feature the 
systematic enumeration, in powers of a coupling 
constant, of the many-particle virtual structure of 
any process. It is convenient to make this explicit 
by introducing a functional way of grouping suc
cessive orders of n-point functions; this may best 
be described by considering the simplest sort of 
nontrivial Lagrangian interaction, L' = (g/3 I) [A (X)]3, 

6 In momentum space, Eq. (4) takes the form of an inte!p'al 
over an absorptive type commutator; hence the adjective. 

I For the 3-point operator, n = 2, this follows with the 
aid ofthe Jacobddentity and the relation B(xy) B(xz) = 9(x1l) 
X B(yz) + B(xz) B(zy). The general proof follows by induc
tion on n. 
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which leads to the field equation 

KzA(x) = (g/2)[A (X)]2 • (6) 

It is of no consequence to this discussion that such 
a Lagrangian theory does not exist, or that the renor
malization constants and counter terms which should 
be present if Eq. (6) is to refer to a renormalized field 
have been omitted; all that is of interest here is 
the form of each of the resulting perturbative re
tarded n-point functions. If the conventional canon
ical commutation relations between the field and its 
time derivative are employed, Eq. (6) may be 
converted to the functional field equation 

Rx = j(x) + (g/2)R! - (g/2)(R~)i_O' (7) 

where the vacuum expectation value of the right
hand side of Eq. (6) has been subtracted off for later 
convenience. The vacuum expectation value of Eq. 
(7) is then 

(Rz ) = j(x) + (g/2)(Rz )eD(R,,) 

- (g/2) [(Rz)eD(Rr )] i-O, (8) 

which is compatible with the proper behavior as the 
source vanishes: (R.)o = (A(x» = o. 

Expansion of the operator eD generates the full 
structure and complexity of the theory. This suggests 
considering an equation for a related functional 
(R!O», 

where 

(10) 

Equation (9) cannot be solved in full generality, 
but the expansion of (R!O» in powers of the source 
can easily be obtained. A single functional differ
entiation yields 

(R~~!) = o(x - y) + g<R;O)<R;~~), 
which may be written in integral form as 

(R~~~) = [Kr - g(R~O»rl o(x - y), (11) 

where K;l o(x - y) == .1R (x - y). From Eq. (11), 
all the n-point functions of (R!O» may be read off by 
simple functional differentiation combined with 
Eq. (10); viz.: 

(R!~~)o = .1R (x - y), 

(R;~~.)o = [Kr - g(R~O»rl g(R~~).) 

X [Kr - g(R;O»r1 o(x - y) li-o 

= g J dx' AR(x - x') .1R (x' - y) AR(x' - z), etc. 

It is evident that these are just the lowest order 
connected n-point functions of perturbation theory, 
the "Born" terms containing no virtual structure; 
this is, of course, not surprising, since the passage 
from Eq. (8) to Eq. (9) consisted of the neglect of 
just such structure. 

The Born functional (R!O», an approximation to 
the complete functional (R.), will be called the 
functional of index zero, and higher-order approxi
mations defined in the following way. The n-point 
functions of (R;ll), the functional of index one, shall 
contain the first radiative corrections (of relative 
order g2) to each of the n-point functions of (R!O»; 
each n-point function of (R!2», the functional of 
index two, shall represent the second radiative cor
rection to the corresponding Born amplitude (rela
tive order g4), etc. Thus, 

'" 
(R z ) == L (R!i), 

i-O 

where symbolically, (R!i+ 1
» "-' g2 (R;i»; further, 

for any fixed index j, 
(j» (j) 

O[(Rr ...... Yn+. 0] = gO[(Rz.v. ... Y.)o]. 

The requirements (R!j)o = 0 will be adopted, in 
agreement with the form of Eq. (8). 

This grouping of the perturbative n-point func
tions into functionals of different indices is especially 
convenient, for it permits a functional method of 
approximating Eq. (8). Insertion of the operator 
D'" between a pair of functionals and mUltiplication 
by the coupling constant produces a quantity 

(R(') ) D"'(R(j) )1 g %,lh,···II.. %,Zl···~1J i-O 

of order l'" relative to what would be ob
tained if the operator D were not present; in 
this latter case (m = 0) the order of the product is 
g X g21+a-l X g2 i +fJ-l. Since the order of the n-point 
funet1'on (R(i+j+m) ) l'S g2('+i+ m)+a+II -1 't ~ 1-

Z.Ul ••• Ua.l •••• /J 0 ,1 10 

lows that the perturbation expansion in powers of 
g can be described in terms of the above functional 
groupings and the expansion of the eD factor in 
powers of D. If Eq. (8) is rewritten in the form 

(R~) = j(x) + (g/2)(R~)iD(R~) 
- (g/2)(R!)lD(R!)]j_o, (12) 

where 
.. 

(R~) == L }./(R!i», 
i-O 

then the expansion of Eq. (12) in powers of A is 
equivalent to the perturbation expansion of every 
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n-point function. More generally, this intermediate
state functional expansion may be formally defined 
independently of the coupling constant, but the 
solutions of the resulting approximate field equa
tions will just generate the perturbation expansions 
(containing divergences) in powers of g, with the 
functional groupings described above. With trivial 
modifications, these statements are independent of 
the particular interaction Lagrangian employed. 

m. AXIOMATIC PERTURBATION THEORY 

Without further reference to the nature of the 
expected results, an intermediate-state functional 
expansion is defined for the axiomatic functional 
by rewriting Eq. (4b) in the form 

<R~.y) = (i/A)8(xy)[(R~), e'AD, <R~)] (13) 

and expanding both sides of Eq. (13) in powers of A. 
Again, (R~> == :E~-o A;<R~j», and as before, the 
only duty of the parameter A is to act as a guide 
in equating functionals of various indices; at the 
end of the calculation A = 1. All the n-point func
tions so defined will be understood to possess the 
conventional translational and rotational invariance 
properties, and to be connected, real and retarded; 
it remains to be shown that they may be con
structed symmetric in their retarded coordinates. 

Upon calculating an arbitrary number of func
tional derivatives of Eq. (13), the general integral 
equation which results from this expansion is 

R~:~, ''' •• )0 = 8(xYI)Q(i)(x, YI ... Yn) 

+ 8(xYI) J du[<m:~y,,, .•• )0 !l(Yl - u) 

and therefore, taking into account retardedness, 

(R~:~, ... y.)o = 8(xYI)Q(;)(x, YI ..• Y .. ) 

+ o(x - Yl)t<j)(X, Y2 ... Yn). (16) 

It is at this point that more singular functions are 
excluded from the right-hand side of Eq. (16), 
since, as pointed out by LSZ and Nishijima, such 
terms may be expected to lead to divergences in 
higher orders. This restriction will be required so 
often that it merits an explicit statement: Condi
tion B. No singularities worse than 0 functions are 
to be inserted in any amputated n-point function. 
All spurious contact terms are also excluded. [The 
definition of a spurious contact term will be given 
in Sec. IV (c).] 

It must now be demonstrated that the <R~:;, .. '7.)0 
given by Eq. (16), in terms of the assumed known 
QW, are symmetric in all retarded coordinates. 
An alternate way of writing the right-hand side of 
Eq. (13) is to define the operator 

R~ == :exp (}.l/2AiD o!oj): (R~), 

in which case Eq. (13) may be expressed as 

R~,y = (i!A)8(xy)[R~, R~]. (17) 

No particular physical significance need be attached 
to the operator R~; it merely provides a convenient 
method of demonstrating the symmetry which 
appears upon calculating further functional deriv
tives, 

R~,y, ... y. = ~: ~ 8(XYl)8(YlY2) .. , 8(Y,,-lY .. ) 

X [ ... [[R:, R~.J, R~.J, ... J, R~.J, (18) 

( 
(j) ) + !leu - x) R ... uy ...... 0], (14) (R~,y, ...... ) = ~: ~ 8(XYl)8(YlY2) '" 8(y .. _IY .. ) 

where the inhomogeneous Q(/) terms are constructed 
from retarded functions of index less than or equal 
to j; those functions of index j which do appear in 
QUl will always be (m + ] )-point functions with 
m < n. If Eq. (14) can be solved for <R~:!, ... y,>o in 
terms of Q(f)(x, Yl '" Yn), the expansion procedure 
is then meaningful, since any n-point function of a 
given index can be constructed from functionals of 
lower index. Actually, only the fully amputated 
functions are of physical interest (except for n = 2), 
and it is these which will be obtained from relations 
of the form of Eq. (14). 

For the time sequence X
O > y~ it follows from 

Eq. (14) that 

« i) > _ (j) Rr,y, ."y. 8 - Q (x, Yl '" y,,), (15) 

x [ ... [(R~), e)'D, <R~,)], ... ], iD, <R~.)]. (19) 

Equation (18) follows from (17) in the same manner 
as (5) follows from (4a); the right-hand side of (19) 
is identically the same as the corresponding quantity 
obtained from functional differentiation of (13). For 
the retarded time sequence X

O > y~, y~, '" y~ the 
right-hand side of (19) is symmetric in all the re
tarded coordinates, and since amputation on all 
coordinates and the expansion in powers of 
}. does not change this situation, it follows that 
Q(f) (x, YI •• , Y .. ) is symmetric in all the retarded 
coordinates for X

O > all y~. However, the only 
condition used in passing from (14) to (15) was 
that XO > y~; no reference was made there to the 
time sequence of XO and the other retarded co-
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ordinates. Because of this there can and will always 
appear in the amputated Q(f) contact terms pro
portional to o(x - Y ,,), n ~ a ~ 2 [in addition 
to terms proportional to o(Y" - Ys)]; these contact 
terms are correctly specified if Q(j) is constructed, 
as assumed, from n-point functions which are them
selves symmetric in all retarded coordinates. The 
only terms which are missing from the amputated 
Q(j) of Eq. (15) are those proportional to o(x - YI), 
and the additional term in (16) expresses just this 
omission. An (R~:~, .. . :v.)o completely symmetric in 
all retarded coordinates can therefore be constructed 
by the simple expedient of choosing7 the unknown 
t(;) (x, Y2 ... Yn) such that all the contact terms of 
form o(x - y,,) are symmetric in all the Ya;8 the 
nonsingular terms of the amputated Q{f) will carry 
the appropriate 8(xYa) factors and are already 
symmetric. Finally, if condition B has been con
sistently invoked and no singularities worse than 
o functions have been introduced into any of the 
retarded functions comprising Q(f), then no such 
singularities will appear in the amputated Q(f). 

With the understanding of the above symmetry 
requirements on every n-point function of every 
index, equations for the functionals of different 
indices may be written down from the A expansion 
of Eq. (13), 

(20) 

(R~~!> = i8(xy){[(R~0», D2j2!, (R;O»] 

+ [(R~l», D, (R~O»] + [(R~O», D, (R~I)]), etc. (21) 

The functionals of index zero are of particular 
interest since they serve to introduce appropriate 
renormalized coupling constants; these will be con
sidered in the next section, and the simplest radia
tive corrections to them treated in Sec. V. 

7 The only remaining unspecified terms are pure c~mnec~d 
contact terms of form O(X-YI) 0(YI-Y2) ••• O(Y,,_I-Y,,); dlBcusslon 
of this point is deferred to Sect. IV (c). Such terms first 
appear in Eq. (27). . . 

8 This can always be done If the coefficlents of each 
il(x -Ya), n ~ a ~ 2, are symmetric in YlY2 •.• Y,,-IYa+1 ... 11'" 
This will always be the case because the o(x -Ya) terms arlse 
from the apphcation of ~ to the particular (I(xYa) factors 
of Eq. (19), and the coefficients of these factors are sYJ?lmetr~c 
in all the other Y coordinates. Another way of seem.g thls 
last point is to consider the ful!y amputated h exp~sl<;m of 
the right-hand side of (19), which must be symmetnc In all 
Va. 

F(x, YI ... Yn) 

+ f: o(x - Ya)f(a)(x, YI '" Ya-IYa+l ... Yn). 
a-I 

Here F represents the nonsingular (in x) fully retarded terms 
already shown to be symmetric in all Va; hence the sum of all 
the singular terms must also be symmetric in all}J", and this 
requires that eachf(a)(x, YI ... Ya-IY"tl ..• Yn) be Independent 
of the superscript ex and be symmetric In all n -1 Y coordinates. 

IV. FUNCTIONS OF INDEX ZERO 

(a) The 2-Point Function 

Setting the source equal to zero in Eq. (20) leads 
to the equation 

(R;?~)o = 8(xy) J du dv A(V - u)(R~~~)o(R~~~)o. (22) 

The existence of a stable particle of mass m implies 
that the Fourier transform of the exact (R~.v)o has 
a pole of unit residue on the mass shell. It is ap
parent that the Fourier transforms of the zero 
index functions under the integral in Eq. (22) are 
evaluated on the mass shell, and these may each be 
assigned the residue Z, at the moment an arbitrary 
number. In configuration space this means the 
replacement of the (R;?~)o factor by Z 5(x - u), 
and similarly for <R~~~)o. Equation (22) then has 
the immediate solution 

<R~~~)o = -Z28(xy) A(X - y) = Z2 AR(X - y). 

But operation with the Klein-Gordon operator 
implies that Z = Z2, or Z = 0 or 1. The only non
zero solution of (22) is therefore 

(R;~t)o = AR(X - Y), (23) 

which implies that the Fourier transforms of all the 
remaining 2-point functions are not to have a mass 
shell pole, 

J dv A (·)(u - v)(R~:~)o = 0, j ~ 1. (24) 

(b) The 3-Point Function 

A single functional differentiation of Eq. (20) 
yields, in the limit of zero source, 

(R!~~,y.>o = 8(XYI) J du[(R~~~.u)o ACYl - u) 

+ A(U - x)(R;~~y.u)o], (25) 

where (23) has been used. This has the form of (14) 
with Q(O) (x, YIY2) = 0; Eqs. (22) and (25) are the 
only ones for which the corresponding Q terms 
vanish (unless the 3-point function is itself zero). 
For the time sequence X

O > y~, it follows from 
(25) that 

(26) 

and the most general acceptable solution of (26), 
symmetric in the retarded coordinates, is given by 

(R~~~ •. y.)o = g 5(x - YI) o(x - Y2), (27) 
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where g is an arbitrary constant (with the dimen
sions of mass) and condition B has been invoked. 
It is not difficult to show that the somewhat stronger 
stat.ement 

(28) 

also follows from (25), condition B, and the sym
metry restrictions. The constant g will represent the 
renormalized charge of the theory, and may be 
defined by equating it to the complete vertex func
tion with all three invariants on the mass shell; this 
then implies that contact terms (with finite co
efficients) of the form of Eq. (27) will be required 
in the corresponding equations for all three point 
functions of higher index, such that the vertex 
functions constructed from the latter shall each 
vanish on the mass shell of all invariants. 

Once Eq. (27) and condition B have been written 
down, the content of the entire intermediate-state 
expansion procedure becomes identical to that of the 
renormalized perturbation expansions. For the 
same argument used in Sec. II to relate functions of 
different orders in g may be applied to the X ex
pansion of Eq. (13); that is, the quantity 

(R (i) ) D"'(R(i) )1 
Z,Jll···"l 1/,111···111: ;-0 

will be of order g2i+l-l. g2m. g2i+k-t, which is the 
order of (R~~;.iv~:"'-:!:""'H)O' The axiomatic X ex
pansion is therefore equivalent to an expansion of 
all n-point functions in powers of the renormalized 
coupling constant. 

(c) The 4-Point Function 

In the limit of zero source, a second functional 
differentiation of Eq. (20) yields 

(R;?~,v.v.)o = O(XYl)Q(O)(x, YIY2Ya) 

+ O(XYl) J du[(R~?~.v.u)o fl(Yl - u) 

+ fl(u - x)(R;~~v.V&U)o], (29) 
where 

Q(O)(x, YIY2Ya) = J du dv fl(v - u) 

X {(R~?~.u)o<R;~~v.v)o + (R~?~.u)o(R~~~v ... )o}, (30) 

and Eq. (23) has been used. For the time sequence 
Xo > Y~, 

Substitution of Eq. (27) into the amputated form 
of (30) yields 

Q(O)(x, YlY2Ya) = -l fl(x - Yl) 

X [o(x - Y2) O(YI - Ya) + o(x - Ya) OCYI - Y2»), 

and Eq. (31) then becomes 

<R~~~,y,y.)o = g2 flR(x - YI)[O(X - Y2) O(YI - Ya) 

+ o(x - Ya) O(Yl - Y2») 

+ o(x - YI)rl(YI, Y2Ya). (32) 

Clearly, the correct choice for tOl is 

fOl(Y1' Y2YS) = g2 flR(Yl - Y2) O(Y2 - Ys), 

which leads to a 4-point function completely sym
metric in all retarded coordinates; this is the same 
result as that obtained directly from Eq. (11). 

To the right-hand side of (32) may be added the 
connected contact term 

G o(x - Yl) O(Yl - Y2) O(Y2 - Ya), 

which corresponds to the quartic interaction gener
ated in Lagrangian theory by an interaction term 
(Gj4!)[A(xW; for simplicity this is neglected here 
(see Sec. VI). The possibility of including such pure 
contact terms arises in the calculation of every 
amputated n-point function (n > 2). From con
ventional renormalization theory it is known that 
interaction Lagrangians of form (r/l!)[A(x)]1 are 
not renormalizable for l ~ 5, and therefore, as 
expressed by the complete condition B, the corre
sponding spurious contact terms are to be excluded 
from all amputated n-point functions (n ~ 5). 

With Eq. (27) and the restrictions of symmetry, 
retardedness and condition B, it is evident from 
these examples that the X-expansion procedure 
generates a zero index functional identical to the 
Born functional of Lagrangian perturbation theory. 
This has been explicitly verified for the 5-point 
function, and it is intuitively clear that it is true for 
the entire functional. 

V. FUNCTIONS OF INDEX ONE 

The simplest radiative corrections to the propa
gator and retarded vertex will be calculated in this 
section, in order to show that no infinite quantities 
enter into their equations, and to demonstrate the 
symmetrization procedure of Sec. III for a non
trivial amplitude. 

(a) The 2-Point Function 

<R~?~,y.y.)o = Q(o,(x, YlY2Ya), 

and again following the method of Sec. III, 

(R~~~,y.y.)o = O(XYl)Q(O)(x, YlY2Ya) 

+ o(x - Yl)f(O)(Yl, Y2YS)' 
Setting the source equal to zero in Eq. (21) leads 

(31) to the equation 
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(R;~~)o = (J(xy)QO)(x, y), 

Q(I)(x, y) = -~ J du[ dU2 dv[ dV2 

X [A (+)(ul - VI) A (+)(~ - V2) 

- A(-)(ul - VI) A(-)(U2 - V2)] 

X (R;~~.u.MR~~~ ..... ), (33) 

where the homogeneous term of the integral equa
tion vanishes because of (24); it will be obvious that 
the latter condition is satisfied by the (R;~~)o given 
by (33). From Eqs. (27) and (28), the form of the 
zero index 3-point function needed in (33) is uniquely 
determined; substitution into (33) yields the result 

<R;~~)o = -~l (J(xy) J du dv AR(X - u) AR(y - v) 

X [A (+\u - v) A (+)(u - v) 

- A(-)(u - v) A(-){u - v)]. (34) 

Inserting representations for (J, AR and A (.) into 
(34), the momentum space propagator defined by 

(R,.,y)o = (211'")-4 J dp r(p)e'P'(z-y) 

then has a radiative correction of order l 

r(l)(p) = l 2 (" dK2[K2 + p2 - iE(p)r l 
3211'" J4 ... 

X [K2 - m2r2[1 - 4m2
/ l]lI\ 

which is the renormalized perturbation theory result. 

(b) The 3-Point Function 

A single functional differentiation of Eq. (21) 
yields the equation 

(R;~~.)o = 8(xy)Q(I)(x, yz) + (J(xy) J du 

X {(R;~~u)o A(y - u) + A(u - x)(n;~~u)o} (35) 

where 

Q(I)(x, yz) = -~ J dUl dU2 dVI dV2 

X [A (+l(UI - VI) A (+)(uz - vz) 

- A (-)(ul - VI) A (-)(u2 - vz)] 

X [(R~~~ ..... )o(R;~!u.u.)o + (R;~~.u.)o(n;~~ ........ )o], (36) 

and Eqs. (23) and (24) have again been used. Pro
ceeding in the standard way, the 3- and 4-point 
Born functions are inserted into the fully amputated 
form of (36) to compute Q(l)(x, yz), the latter is 
multiplied by a factor (J(xy) , and to this combi
nation is added an unknown contact term propor
tional to 45(x - y); the result is 

(R~~~z)o = -il{(J(xy) AR(x - z)[A(+)(x - y) A(+)(z - y) - A(-)(x - y) A(-)(z - y)] 

+ (J(xy) AR(y - z)[A (+)(x - z) A (+)(x - y) - A (-)(x - z) A (-l(X - y)] 

+ 45(x - z)· (J(zy).! J du AR(z - u)[A(+)(u - y) A(+)(u - y) - A(-)(u - y) A(-)(u - y)] 

+ 45(y - z)·(J(xy)·! J du AR(z - u)[A(+)(x - u) A(+)(x - u) - A(-)(x - u) A(-)(x - u)]} 

+ 45(x - y)f(l,(y, z) + gZ(l) 45(x - y) 8(y - z). (37) 

A little algebra shows that the first and second 
terms of Eq. (37) may be rewritten in the form 

-ig3{AR(X - y)(J(YZ)[A(+l(X - z) A(+)(y - z) 

- A H(X - z) A (-)(y - z)] 

+ AR(x - z)(J(zy)[A(+)(x - y) A(+l(Z - y) 

- A (-l(X - y) A (-)(z - y)]), (38) 

and, as expected, are symmetric in the retarded 
coordinates. The function f{l) is determined by the 
requirement of symmetry to be 

tl)(y, z) = -~ g3(J(yZ) J du AR(y - u) 

X [A (+l(U - z) A (+)(u - z) 

The constant Z(l) is determined by the (arbitrary) 
condition that the mass shell vertex function of 
order g3 shall vanish; there will be a corresponding 
Z (i) factor to all orders of the 3-point function. 
It should perhaps be again emphasized that such 
pure contact terms are permitted only for (and in 
each order of) the 3- and 4-point functions; for 
n-point functions with n ~ 5 such contact terms 
become spurious and are excluded by condition B. 
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For the simple case considered here of a single (vertex) interaction, such terms should be consistently 
excluded from the 4-point functions. 

It is interesting to compare this result with that of the corresponding Lagrangian calculation, which 
is most simply obtained by the A expansion of Eq. (12). To avoid confusion, the retarded functions derived 
from the field equation will be distinguished by the notation (It). A simple calculation yields 

(R~~~z)o = ~ l{ .1R (x - z) .1R (x - y)[.1 (+)(z - y) - .1 (-)(z - y)] 

+ .1R (x - y) .1R (y - z)[.1 (+)(x - z) - .1 (-)(x - z)] 

+ .1R (x - z) .1R (z - y)[.1 (+)(x - y) - .1 H(X - y)] 

+ o(x - y) J du .1R (x - u) .1R (u - z)[.1 (+'(z - u) - .1 H(Z - u)] 

+ o(x - z) J du .1R(x - u) ~R(U - y)[.1(+)(y - u) - ~(-'(y - u)] 

+ o(y - z) J du .1R(x - u) ~R(U - y)[.1(+'(x - u) - .1H (x - U)]}. (40) 

The first three terms of Eq. (40) are symmetric in y and z, and it is easy ·to show that they are identical 
to the contribution of Eq. (38); no divergences occur in the sum of the Fourier transforms of these terms 
since they correspond to the triangle diagram which is finite in this theory. The contact terms of Eq. (40) 
differ from those of the axiomatic result by the presence of 8 functions under the integrals rather than 
standing outside of them; this indicates a divergence most simply seen in the Fourier transforms. If the 
amputated 3-point function in momentum space is defined by 

r(qj pk) = (211')-4 J dx dy dz X exp [i(q·x + p'y + k·z)](R".yz)o, 

then the contact terms of (40) lead to the contributions r!1), 
3 (" [ 4 2J1I2 r!I) (qjpk) = 3~11'2 o(q + p + k) J

4m
• dK2 1 - i {[e + m2 

- ie(k)r1[K
2 + k2 

- ie(k)r1 

+ [P2 + m2 _ ie(p)r1[l + p2 _ ie(p)rl + [q2 + m2 + ie(q)rl[K2 + q2 + ie(q)rl}, (41) 

which represent the diagrams obtained by insertion of a bubble into each of the q, p, k lines. The divergence 
of these integrals is due to the omission of a mass renormalization counter term in the original field Eq. (6). 
If the renormalization is performed by subtracting from each integral of (41) its mass shell value, there 
results 

which is precisely the contribution obtained by directly calculating the Fourier transforms of the axiomatic 
contact terms. 

VI. DISCUSSION 

Analogous calculations have been carried through for the retarded perturbative 11'-11' scattering ampli
tudes (neglecting isotopics) to order G8

; here, G represents the renormalized 11'-11' coupling constant first 
appearing in the amputated 4-point Born function, 

(R~~~.y.y.)o = G o(x - Yl) O(YI - Y2) O(Y2 - Ya). (43) 

The first radiative correction to this amplitude may be calculated with the aid of (43), 
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(R~:~.y,y.)o= -(ij2) G2
{ O(X - YI) O(Y2 - Ya)O(YIY2)[~ (+)(YI - Y2) ~ (+)(YI - Y2) - ~ H(YI - Y2) ~ H(YI - Y2)] 

+ O(X - Y2) O(YI - Ya)O(Y2Ya)[~(+)(Y2 - Ya) ~(+)(Y2 - Ya) - ~H(Y2 - Ya) ~(-)(Y2 - Ya)] 

+ O(X - Ya) O(Y2 - YI)O(YaYI)[~(+)(Ya - YI) ~(+>CYa - YI) - ~H(Ya - YI) ~(->CYa - YI)]} 

(44) 

but in contrast to the previous situation, the constant Z~l) must appear and be assigned an infinite value 
in order to specify the equal-time dependence of the right-hand side of (44). If the momentum space ampli
tude is defined by 

r(qj PIP2Pa) = (2'7I'r 4 J dx dYI dY2 dYa X exp [i(q·x + PiYI + P2'Y2 + Pa'Ya)](Rx,y,y,y,)o 

then the Fourier transform of (44) is given by 

G
2 1'" 2[ 4m2]112 r(l)(qj PIP2Pa) = 3211"2 o(q + PI + P2 + Pa) 4m' dK 1 - ~2 

X {[(PI + P2)2 + i - iE(PI + P2)r l + [(PI + Pa)2 + l - iE(PI + Pa)r l 

+ [(P2 + Pa)2 + K2 - iE(P2 + Pa)r l
} + Z:l)' o(q + PI + P2 + P3)' (45) 

Choosing the constant Z~l) such that as a function of the invariant variables s, t, u, and with all four mo
menta on the mass shell, 

res, t,u)!._t ... _4/3m' == G. 
then the condition 

r(l)(s, t, u) ! •. t .... 4/am' = 0 

serves to determine Z~l)' which, of course, disappears from the final result, 

G
2 1'" dl[1 - 4m2jly/2 { (PI + P2)2 + tm2 

r(!)(q;PIP2Pa) = -'J2 2 o(q + PI + P2 + Pa) [ 2 4 2] [( + )2 + 2 '(P + )] 
o 11" 4m' K - lfm PI P2 K - tE I P2 

+ (PI + pa)2 + tm2 + (P2 + pa? + tm2 
}. 

[(PI + pa)2 + i - iE(PI + Pa)] [(P2 + Pa)2 + K2 - iE(P2 + pa)] 

Two further statements should be made con
cerning the relation of this perturbation construction 
to those of other methods. The first remark is to 
note that, with the aid of Eqs. (3) or (4), any con
nected time-ordered n-point function of order gk 
may be constructed from retarded functions of order 
less than or equal to k. As a method of computing 
renormalized time-ordered functions, this procedure 
is straight-forward in principle but cumbersome in 
practice; one quickly appreciates the relative sim
plicity of conventional graphical and renormalization 
techniques. As a method of computing double graphs, 
the axiomatic construction is simpler than that of 
the corresponding Lagrangian calculations. 

The second remark concerns the apparent diffi
culty of proving the convergence of the renormalized 
Fourier transforms of all retarded amplitudes of 
arbitrary order. While the entire construction may 
easily be transcribed into momentum space (at the 
price of having certain symmetry statements ob
scured), more than the conventional power counting 
theorem is required to demonstrate convergence. 
This is essentially due to the need of retaining the 
knowledge of which momenta correspond to specific 

retarded configuration space coordinates, and this 
information cannot be specified by counting powers 
of momenta alone. 

It should also be remarked that a proof of the 
Lorentz invariance of every amplitude would be 
very desirable. It has been assumed that all radia
tive corrections constructed in the manner de
scribed here will turn out to be relativistically in
variant. The essential point in question is the require
ment that all 0 functions, of whatever argument, 
must eventually multiply a function which vanishes 
for spacelike separation of the same argument; 
e.g., O(x) ~(x) is invariant but O(x) ~(l)(x) is not. 
All the expressions obtained above possess this 
property, as do all the terms (some of considerable 
complexity) obtained to order G3 for the 11"-11" scatter
ing amplitude. 
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Homomorphically Related to It* 
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A study is made of the real restricted Lorentz group, L, and of its relationship 
(a) to the group, SL(2C), of complex unimodular two-dimensional matrices, and 
(b) to the group, 0 3• of orthogonal transformations in a complex space of three dimensions. 

The discussion of case (a) is an improved version of the treatment by Wightman. Its notable features 
are, firstly, that it gives important formulas in new concise forms and their proofs in an elegant and 
economical manner, and, secondly, that it deals with the nontrivial matter of proving the internal 
consistency of the formalism. To illustrate the practical utility of the theory, the product of two 
nonparallel pure Lorentz transformations is studied. In the discussion of case (b), explicit formulas 
realizing the isomorphism of 0 3 and L are obtained. These formulas are new and have been applied, 
for illustrative purposes, to the derivation of the transformation properties under L of the electro
magnetic field vectors, regarded as a complex three-vector (E + iH). A result analagous to the 
factorization of the general element of L into a spatial rotation and a pure Lorentz transformation, and 
to the polar decomposition of the general element of SL(2C), is derived for 0 3• Insight into the re
lationship of 0 3 to L is provided by considering the unimodular matrix description of the complex 
Lorentz group, and the contrasting specializations of it that lead to the unimodular matrix descriptions 
of its subgroups, 0, and L. 

1. INTRODUCTION 

I N this paper, a detailed discussion is given of the 
theory of the transformations that constitute 

the real restricted l Lorentz group, L, and its relation
ship to the group, SL(2C), of complex unimodular 
two-dimensional matrices, and to the group, 0 3 , 

of orthogonal transformations in a complex space 
of three dimensions. 

The small part of the present work that refers 
to Lorentz transformations themselves is principally 
of the nature of a review of well-known matter.2 
It is given in the interests of completeness and for 
convenience of reference in the study of the relation
ship of SL(2C) and 0 3 to L. The only new material 
involved is a set of identities, Eq. (54), below, 

* Research supported in part by the U. S. Atomic Energy 
Commission. 

I The various adjectives restricted, proper, etc., used in 
connection with Lorentz transformations, are all defined 
below. 

2 See, for example, the books by Fock [V. A. Fock, The 
Theory of Space, Time and Gravitation, translated by N. 
Kemmer (Pergamon Press, New York, 1959)J, and M!Illler 
[C. M!Illler, The Theory of Relativity (Oxford University Press, 
New York, 1952»), or else the lectures by Tolhoek [H. A. 
Tolhoek, Part II of lectures given at CERN in 1959 on the 
Representations of the Lorentz Group in Quantum Mechanics 
(unpublished»), and Wightman [A. S. Wightman, lectures 
given at Les Houches in 1960 on "Invariance in Relativistic 
Quantum Mechanics," in Dispersion Relations and Elementary 
Particles, edited by C. de Witt and R. Omnes (John Wiley & 
Sons, New York, 1960)J. The two sets of lectures provide 
a comprehensive and, to some extent, complementary 
discussion of Lorentz transformations. The lectures by 
Tolhoek are based on lectures given by Wigner [E. P. Wigner, 
lectures given at Leyden in 1957 on Relativistic Invariance 
in Quantum Mechanics, report by R. M. F. Houtappel 
(unpublished»). 

satisfied by the transformation coefficients L#, of a 
proper Lorentz transformation, and part of the dis
cussion of the product of two pure Lorentz trans
formations in nonparallel directions. 

The homomorphism of SL(2C) onto L has been 
noted and already studied by many authors.3

-
6 The 

present discussion however is quite new, although 
based on that of Wightman,2 over which it offers 
several important advantages. Firstly, it is con
sistent with the usual notations of tensor calculus 
in Minkowski space; secondly, it presents formulas 
in their most concise form and their proofs in an 
elegant and economical manner; and thirdly, it 
gives a proof of the internal consistency of the 
formalism. In the provision of such a proof the 
identities mentioned in the previous paragraph are 
essential. The new formulation of the theory of 
the homomorphism has emerged chiefly from the 
realization7 that the Pauli matrix four-vector T# = 
(TO, Tk) does not by itself provide an adequate 
algebraic basis for the discussion of two-dimensional 
unimodular matrices. It is necessary to introduce 
also the auxiliary matrix four-vector p# 

(1) 

3 B. L. van der Waerden, Die Gruppentheoretische Methode 
in der Quantenmechanik, (Verlag Julius Springer, Berlin, 1932), 
p.57. 

( V. Bargmann, Ann. Math. 48, 568 (1947). 
i M. A. Neumark, Am. Math. Soc. Trans. 6, 379 (1957). 
e A. S. Wightman, reference 2. 
7 This point has previously been made by Brown [L. M. 

Brown, Phys. Rev. 111,957 (1958»), who also uses the quant
ities p#, as defined by Eq. (1). 
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with ~ = iT2 and the asterisk denoting complex con
jugation. Once various algebraic relationships satis
fied by the quantities T~ and p~ have been derived, 
investigation of the homomorphisms and the form
ulas that realize it explicitly is readily undertaken. 
It is quite interesting to notice that specialization 
of the formalism to the subgroup, Ra, of spatial 
rotations of L and to the unitary subgroup, SU(2C), 
of SL(2C) leads to an extremely compact exposition 
of the essential formulas of the qua ternion theory8. 9 

of rotations. 
The isomorphism of 0 3 to L has also been noted 

by several authors,lO-13 but no investigation of 
formulas that realize it explicitly has been under
taken before. These formulas are obtained here by 
relating the transformations of 0 3 to those of SL(2C) 
and hence to those of L. They are then applied, for 
purposes of illustration, to the derivation of the 
transformation properties under L of the electro
magnetic field vectors by building from them the 
complex three-vector E + tHo Familiar resultsl4 

are thus reproduced in quite an interesting manner. 
Further insight into the relationship of 0 3 and L 
is obtained by consideration of the complex Lorentz 
group, which contains them both as subgroups. 
For the unimodular matrix description of their trans
formations can be obtained by appropriate and 
contrasting specializations of the unimodular matrix 
description of complex Lorentz transformations. 
The discussion of complex Lorentz transformations 
necessary to clarify these remarks is a reformulation 
of the work of Wightman,s which offers the same 
advantages over his discussion as were mentioned 
in the real case. 

One aspect of the relationship between the three 
groups, L, SL(2C), and 0 3 , that is worthy of notice 
is that for each of the two latter groups one has a 
decomposition of the general element analogous to 
the unique resolution of the general element of L 
into a spatial rotation and a pure Lorentz trans
formation. In the case of SL(2C), one has the well
known polar decomposition of a unimodular 2 X 2 

8 H. Goldstein, Classical Mechanics ( Addison-Wesley 
Publishing Company, Inc., Reading, Massachusetts, 1950), 
Chap. 4. 

II H. C. Corben, P. Stehle, Classical Mechanics (John 
Wiley & Sons, New York, 1960), 2nd ed., Appendix IV. 

10 A. Einstein, W. Mayer, Sitzber preUBB. Akad. Wiss. 
Physik-math-Kl. p. 522 (1932). 

11 E. Cartan, Lecons sur la Thoorie des Spineurs, ActualiUs 
Sci. et Ind. (Hermann & Cie Paris, 1938), Nos. 643 and 701, 
Secs. 82, 160. 

1. G. Racah, Nuovo cimento Suppl. 14, 75 (1959). 
11 P. Roman, Theory of Elementary Particles (North

Holland Publishing Company, Amsterdam, 1960), p. 60. 
It See Sec. 24 of Fock's book.' 

matrix into a unitary 2 X 2 matrix and a Hermitian 
positive 2 X 2 matrix, which, as stressed by Wight
man, is extremely important in practical work on 
Lorentz transformations. The analogous result for 
0 3 given below by Eq. (137) is likewise a general 
matrix theorem/5 and, though of less interest 
practically, is important for the completeness of 
the theory. 

The present work ends with a discussion of the 
(somewhat artificial) transition from the 2 X 2 
unimodular description of Lorentz transformations 
to the 4 X 4 (Dirac) matrix description that allows 
the representation of inversions to be included. This 
is aimed at providing a link between the matter 
discussed here and the discussion given in text 
books on field theory,I6 .17 It further focuses attention 
on the fact that the homomorphism of SL(2C) onto 
L and the associated work on two component 
spinor theory can be discussed in terms of the usual 
operations of matrix algebra. As a corollary to this 
remark, one sees that use of the methods of spinor 
caiculusl8

,19 leads to unnecessary algebraic compli
cation. 

Concluding the introduction, a brief sketch of the 
contexts of the ensuing sections of the paper is 
given. Section 2 deals carefully with matters of 
notation and with the properties of the completely 
antisymmetric tensors r<~ and Em in Minkowski 
and ordinary three-dimensional space. Section 3 gives 
the algebra of the matrices T~ and p~. Section 4 
gives a variety of usual remarks on Lorentz trans
formation as well as the identities (54) mentioned 
above. Section 5 deals with the homomorphism of 
SL(2C) onto L, Sec. 6 with spatial rotations and 
pure Lorentz transformations. Section 7 contains 
the work on Oa, and Sec. 8 discusses inversions and 
the four-dimensional (Dirac) matrix description of 
Lorentz transformations. 

2. NOTATION 

Let v~ = (VO, v) = (VO, vk) and v~ = (VO, -v) 
denote the contravariant and covariant components 
of a four-vector in Minkowski space with metric 
tensor g'" = g~. such that 

16 F. R. Gantmacher, Applications of Theory of Matrices, 
translated by J. L. Brenner (Interscience Publishers, Inc., 
New York, 1959), p. 4. 

11 S, S. Schweber, Introduction of Quantum Field Theory 
(Row, Peterson & Company, Evanston, 1961). 

17 N. N. Bogoliubov, V. Shirkov, Theory of Quantized 
Fields, translated by G. M. Volkoff (Interscience Publishers, 
Inc., New York, 1958). 

18 E. M. Corson, Tensors, Spinors and Relativistic Wave
Equations (Blackie and Son Limited, London, 1953). 

19 W. L. Bade, H. Jehle, Revs. Modern Phys. 25, 714 
(1953). 
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and covariant components of a four-vector in 
(2) Minkowski space, respectively, by a column and 

a row matrix of four elements, time component 
first, one may associate with a mixed second-rank 
tensor T", a matrix T, according to 

Lower-case Greek letters are used for indices which 
may take on the values 0, 1,2, and 3, and summation 
over these values is implied for any Greek letter 
appearing in any multiplicative expression once as 
a subscript and once as a superscript. Lower-case 
Latin letters from i onwards are used for indices 
that only take on the values 1,2, and 3. Subsequent 
equations are arranged20 so that Latin indices appear 
as superscripts only, and then summation over the 
values 1, 2, and 3 is implied for repeated ones. 
Thus. for the scalar product of two four-vectors 
u and v one has 

TOo TOl T02 T03 

T= 
Tlo T\ Tl2 T\ (9) 
T20 T 2l T22 T23 

T3
0 T3l T32 T3

3 

The elements of the transposed matrix T are related 
to those of T by 

(10) 

u·v = u"v" = g"'u"v, (3) for det T, one has the expression 

= u·v· - UkV
k = u·v· - u·v. det TEatJ-r' = E", .. "TI' aT'pT\T>'" (11) 

The Levi-Civita symbol r«>' is a completely anti- and, since TT-1 = 1, one can write also 
symmetric tensor defined as follows: 

Em>. = 0, unless its indices take on distinct values, 

r'>' = S, when they do, where S is the signature 
of the permutation that carries the set of distinct 
values ",11K}.. into 1230. Thus, /230 = - E1230 = 1. 
For later use, the following identities involving the 
Levi-Civita symbol are needed 

(12) 

In ordinary space, one associates with a tensor Rill 
of second rank a matrix R, according to 

(13) 

P.JlIC). 
E E",,,, a -3! ~>'a, (4) with det R given by 

P."IC). 
E E",a{J -2! (~«a ~>'p - ~'p ~\), 

-I! (~'a ~'p ~\ + ~'.., ~' .. ~>'{J 

+ ~'{J ~\ ~\ - ~. a ~\ ~>'{J - ~'.., ~'{J ~\ 

- ~'(J ~'a ~\), 

(5) 

(6) 

where ~I', = g", = g.- is a Kronecker delta. These 
results can be verified directly. 

The Levi-Civita symbol of ordinary space is /kl, 
defined similarly to E"">-' with /23 1. For it, one 
notes the results 

EiUEikn = 2 ~l"', (7) 

(14) 

Using RR-1 = 1, this gives 

detRikl(R-l)lr = E"orR"iRok . (15) 

If T", is a tensor with TOO = 1, TO" = Th = 0, 
one can associate with its spatial components a. 
matrix R defined by 

(16) 

which agrees with the association for the unit case 

(17) 

EiklEimn = (~k'" ~ln _ ~k" ~lm). 

Also 

(u A v/ = ll ... UV". 

(8) This last point has been mentioned with a particular 
view to the restriction of Lorentz transformation 
formulas to spatial rotation formulas. For, as in 
the case of several other points noted in this section, 

Next, the subject of matrix notation is taken up, 
noting first that H, M*, Mt, M-\ respectively, 
denote the transpose, complex conjugate, Hermitian 
conjugate, inverse of the matrix M. In agreement 
with the convention of denoting the contravariant 

20 With a few exceptions such as Eqs. (16), (17) below. 

this is a place where errors of sign can creep in. U 

3. ALGEBRAIC PROPERTmS OF MATRIX VECTORS 
T"ANDp'" 

One begins with the properties of the familiar 

21 For example, the equations in reference 18 that cor
respond to Eqs. (4)-(6) contain an error of sign on one side. 
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Pauli matrices "k which are a set of three 2 X 2 
matrices defined by the law of multiplication 

(18) 

In the usual representation, one has 

and apply (26) to it to prove 

+ g"~t!',afJ _ g,\"ufJ + g'"ilo.a~TaPfJ' (31) 

From (18), one gets 

[
1 OJ. (19) From (25) and (31), one next obtains the results 

o -1 Tr (T"p') = 2g"', (32) 

Tr (T"p'T"p~) 

and, from (18) and (21), one gets 

Tr (TiT") = 2 aik, 

Tr (Ti Tk Tl) = 2iik'. 

(20) 

(21) 

(22) 

(23) 

Using (18), one can simplify the product of four 
Pauli matrices and hence prove 

Tr (TiTkTIT"') = 2(aik aim - Oil akn + aim akl). (24) 

When one attempts to pass from the above dis
cussion to the properties of the quantities T" = 
(,,0, "Ic), where TO is the unit matrix of two rows and 
columns, one soon sees that a concise statement 
in terms of the quantities g''', r">" cannot be ob
tained. Accordingly, one introduces also p" 

(33) 

The remaining identity to be proved for later use 
is one of a different type. It is 

(34) 

with a, b, c, and d ordinary matrix row and column 
labels. Equation (34) may be directly proved in 
the representation (19). It may be presented 
alternatively in the bizarre but useful form 

(Ti).b( Ti).d = 2 a.d abc - a.b a.d • (35) 

4. LORENTZ TRANSFORMATIONS 

A Lorentz transformation is defined to be a real 
linear transformation of the type 

xl' ---+ x'" = L" .x' , (36) 

p" = t( T")* t-1 = (TO, -1:) (25) in Minkowski space, which leaves invariant the 

where22 t = iT' = -r-1
• Now Eq. (18) can be quadratic form 

extended to give the law of multiplication g"'x,.x,. 
(26) The transformation coefficients thus satisfy 

or 

(27) or 

L''.L: = 0''.. Equations (26) and (27) can be generated, the one 
from the other, by means of the replacements 
" ---+ p, p ---+ T, i ---+ -i. Indeed, it follows from (25) 
that one can proceed from any identity to an equally 
valid one by this means. This should be remembered 
in connection with the identities (28) to (34) proved 
below. 

In matrix notation, one writes (36) as 

From (26), one can easily prove 

One may also extend (21) to give 

(28) 

(29) 

(30) 

with L satisfying 

and I. is given by 

I. = 

x ---+ x, = L·x, 

tI.L = I., 

1 0 0 0 

0 -1 0 0 

0 0 -1 0 

0 0 0 -1 

(37) 

(38) 

(39) 

(40) 

(41) 

!2 The matrix r is identical to the matrix that plays the 
role of metric epinor in spinor calculus. See reference 9. From (40) one sees that the set of all Lorentz trans-
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formations form a group: the full Lorentz group. 
In particular, if L is a Lorentz transformation 
so is L- 1 

LL-1 = 1, 

L~.(L-lr. = 6~ •. 

From (38) and (42), one can see that 

(L-1
),. = L:, 

or 

(42) 

(43) 

The elements of subset I constitute the restricted 
or proper orthochronous Lorentz group.24 In subse
quent work the letter L will always refer to an ele
ment of the restricted Lorentz group, unless indica
tion to the contrary is given; the adjective restricted 
will, further, often be left out. In agreement with 
this, the elements of subsets II through IV can be 
generated from the elements L of subset I in the 
forms 

I.L, I,L, I,I,L (50) 

(44) where I., given by (41), IS the matrix describing 

Equation (40) is equivalent to ten independent con
ditions on the coefficients Y. 

LOOLOO - LOkLok = 1, 

LooLoO - LioLik = 0, 

LOiLok _ LliLlk = _oik. 

(45) 

Similarly, from the fact that L-1 is also a Lorentz 
transformation, one also has, using (44) 

LooLoO - LkoLko = 1, 

LOOLko _ LOiLki = 0, 

LioLko _ LilLkl = _ Oik. 

From (40), it follows thaea 

detL = ±1 

(46) 

(47) 

and, from the first line of (45), (46), it follows that 

(£"0)2 2: 1, 

that is, 

L OO 2: 1, or L Oo ::; -1. (48) 

Lorentz transformations with det L = + 1 (-1) 
are named proper (improper); those with LOO 2: 1 
(::; -1) are named orthochronous (nonorthochro
nous). From (47) and (48), one sees that the set 
of all Lorentz transformations is divided into four 
disjoint continuously connected subsets charac
terized by 

I II 

det L 1 -1 

III 

-1 

IV 

1 

LO O 
::; 1 ::; 1 ::; - 1 ::; 

(49) 
1. 

sa Tolhoek2 proves the theorem: Of every set of four 
linearly independent four-vectors that are mutually or
thogonal, three are space-like and one time-like. Regarding 
the four columns (or rows) of L as a set of four four-vectors, 
Eq. (47) imflies their linear independence, and then Eq. (45) 
[or Eq. (46) contains the rest of the information stated in the 
theorem. 

space inversion 

x~ -+ x'~, x' = -x, (51) 

and It = - I, describes time inversion. 
Next, the conditions (40) on the L~. are shown 

to be replaceable by two distinct sets of conditions, 
of which one holds for proper and the other for 
improper Lorentz transformations. One starts with 
the expansion of the determinant of L in the form 
(12), and uses Eq. (43), which is fully equivalent 
to (40), to write this in the form 

(52) 

with the upper and lower signs for the cases det L = 

+ 1, -1, respectively. On mUltiplying both sides 
of (52) by - E"~·). and using Eqs. (5) and (6) to 
simplify the left and right sides, one is led, after 
some algebra, to 

2(Tr L)LaP - 2(LL)"P = ±gaP {(Tr L)2 - Tr (LL)} 

=F 2(Tr L)LPa ± 2(LL)P". (53) 

For the case of proper Lorentz transformations, 
Eq. (53) rearranged to read as 

2(Tr L)(L~" + L"~) = g"P {(Tr L)2 - Tr (LL) I 
+ 2(LL)"P + 2(LL)P". (54) 

This identity is an essential step in the proof of 
the consistency of the formalism developed in the 
next section. 

Further discussion of the transformations of the 
restricted Lorentz group is deferred until its relation
ship to SL(2C) has been investigated. 

5. DESCRIPTION OF LORENTZ TRANSFORMATIONS 
BY COMPLEX UNIMODULAR 2 X 2 MATRICES 

With each point x" of Minkowski space, one may 
associate a 2 X 2 matrix X by setting 

14 The only nontrivial part of the proof of this statement 
is the proof that the product of two orthochronous Lorentz 
transformations is again orthochronous. This is proved in 
the lectures cited in footnote 2. 
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(55) -a* b* -ib* a* 

If x~ is real, X is Hermitian and conversely. Also X 
-bolo a* ia* -bolo 

(62) 

det X = x"x~. (56) -Colo dolo -id* Colo 

-dolo Colo ic* -dolo 
From (55), one obtains the inverse relationship 

xl' = ! Tr (pI'X) 

by using (32). 

(57) with A = <: ~). Thede terminants of the matrices 
on the right can be evaluated easily by Laplace's 
rule. One thereby obtains 

If A is a complex unimodular (i.e., det A = 1) 
matrix of two rows and columns, it is easily seen 
that the transformation 

X~X' = AXA t (58) 

16 det L = [4i(det A)2][ -4i(det At)2] = 16, 

as required. 
If one writes 

preserves the Hermiticity and the determinant 
of X, which suggests that it is intimately related then the conditions det A = det At = 1 are equiva-
to the Lorentz transformation lent to 

x" ~ x'" = L~ oX' • (59) a~a" = a*"a*" = 1, 

It is the aim of this section to investigate this so that 
relationship fully. 

From (58), one gets 

which leads, using (32), to the explicit relationship 
of L to A 

(60) 

If one can now prove that L(A) is real, has deter
minant + I, and L(A)"" ~ I, and that L(A1)L(A2) = 
L(A 1A 2), then it follows that (60) realizes a 2 : 1 
homomorphism 

±A -L(A) (61) 

of the group, SL(2C), of complex unimodular 2 X 2 
matrices onto the restricted Lorentz group L. That 
L(A) as given by (60) does indeed satisfy these 
requirements is now proved. 

Using the general matrix results 

(Tr M)* = Tr M t
, Tr (MM') = Tr (M'M) , 

one easily shows that 

In order to evaluate det L(A), one uses the repre
sentation (19) to give Eq. (60) in the form 

L O
o LO

l 
L0

2 LOa -a -b -c -d 

2 L\ L02 LO
l L J

3 C d a b 

L20 L\ L22 L23 -ic -id ia ib 

CO L\ L3
2 L\ a b -c -d 

also as required. Finally, one has 

L(A 1Y,L(A 2Y). 
= ! Tr (pI' Al T,A I tH Tr (p' A 2 T).A 2 t) 

= ! Tr (pI'AIA2TxA2tA/) 

= L(A 1A 2)A, (63) 

where Eq. (34) has been used to obtain the second 
line. One immediate consequence of (63) is 

(64) 

The next part of the discussion concerns the 
inversion of Eq. (60) to give A in terms of L(A). 
To obtain the required formula, one starts out from 
(59) 

and 

L • = A-I At-I ~ T., T"., (65) 

obtained from it with the help of (43). One now uses 
(34) to derive from them the results 

(66) 

L/ T ,pI' = A -lTpA t-l pI' = 2A -1(Tr At-I). (67) 

For unimodular A, Tr At = Tr At-t, so that multi
plication of (66) and (67) gives 

4(Tr At)2 = L ... L.). T"p'i p•. (68) 

With the aid of Eq. (31), one proves that the right 
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side of (68) is indeed a multiple of the unit matrix. 
Hence, (66) and (68) can be combined to give 

±A = Lp.r"'l/[L,,(1L'Yor"/ip'Y]1/2, (69) 

[4 + (Tr L)2 - Tr (LL) + irKhLp..LKA]1I2 
(70) 

The formula for A in terms of L has not been given 
in the concise form (69) before, although Joos's 
has given form (70). Further, the derivation given 
here is to be contrasted with the laborious deriva
tion of form (70) sketched by Wightman.2 Finally, 
verification that Eqs. (69) and (70) do indeed satisfy 
Eq. (60) is no trivial task (as appears to be implied 
by Wightman'). It is effected as follows. From (67), 
one obtains 

Lp.p'rp. = 2r A *-1 r-\Tr A-I) = 2A t(Tr A), (71) 

on using the result 

r A'r-I = A-I. (72) 

From (60), one derives with the aid of (34) the result 

pure Lorentz transformations. Spatial rotations are 
considered first. 

A spatial rotation of angle B in a positive sense2G 

about the unit spatial vector n is given by 

XP~X''', 

(76) 

X' = x cos B + x-nn(1 - cos B) + n A x sin B. 

One may also write this as 

xl' ~ x'" = L P .x' 

with 

L
O

• = 1, L
O

" = L
ko = 0, (77) 

- Llk = cos B Olk + (1 - cos B)n1nk - sin Belklnl, 

or else simply as 

(78) 
Tr L = (Tr A)(Tr A \ (73) 

Introducing the matrices TI which satisfy the com
One now inserts (66) and (71) into (60) and uses mutation relations 
(73) to give 

(74) 

The sixfold can be evaluated without much difficulty 
from the results of Sec. 3. To see that the imaginary 
part of the right side of Eq. (74) vanishes, one 
requires the identity 

which follows, for proper Lorentz transformations, 
from Eq. (52). Then the right side can be simplified, 
by use of identities (54), to 4Y' (Tr L), completing 

and 

T/1'''TI + TIT"T/ = 81kTI + 8kITI, 

and, which can be represented by 

(TI)'k = ie'lk, 

(79) 

(80) 

(81) 

one can write the matrix R as given by 
(77) in the form 

(78) with 

R = exp [iB(n·T)]. (82) 

the consistency proof. To verify this statement, one must note that, as a 
For the work of Sec. 8, one notes that Eq. (65) consequence of (80), one has 

L ' = A-I At - I p.T, r" 

can be converted into 

L':p. = rA*-Ir-Ip"rA'-lr-I = Atp!,A, 

with the aid of (72). 

6. ROTATIONS AND PURE LORENTZ 
TRANSFORMATIONS 

(75) 

(n.T)3 = (n.T) (83) 

and use identity (8) to simplify the term proportional 
to (n·T)2 

If an element LB of L describes a spatial rotation, 
it must commute with f. as given by (41) and 
hence, from (40) satisfy 

LRLR = 1. (84) 

Two important subsets of the restricted Lorentz One can show, using (10), that the matrix L given 
transformations are the spatial rotations and the 

Ii H. Joos, "Bemerkungen zur Phase-Shift Analysis auf 
Grunde der Darstellungstheorie der inhomogenen Lorentz 
gruppe," Oberwolfach 1959 (unpublished). 

26 If i, j, and k are unit vectors in the (positive) directions 
of the right-handed set of spatial coordinate axes Xl, x2, and 
x3, a rotation of amount (J m a positive sense about k must 
carry i over to (i cos (J + j sin (J). 

27 In agreement with the concluding remarks of Sec. 2. 
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by (77) does, indeed, satisfy (84). Conversely, if 
an element of L satisfies (84), it describes a spatial 
rotation. 

One can see from the discussion of Sec. 5, that 
the elements of SL(2C), which correspond to spatial 
rotations are unitary, and conversely. Indeed the 
element of A of SL(2C), which corresponds to the 
spatial rotation (77) is given by (70) in the form 

A = cosl8 - isinl8-c·n == A(n, 8), (85) 

which is evidently unitary. It is of course very well 
known that the spatial rotations form a group, Ra, 

a subgroup of L, to which the unitary subgroup, 
SU(2C), of SL(2C) is 2 : 1 homomorphic. Formulas, 
which describe the homomorphism, are contained 
within the work of Sec. 5. Nevertheless, it is con
venient to spell out in detail a separate derivation 
of them, using an approach similar in spirit to that 
already described. What is thereby obtained is a 
more compact derivation of the essential results of 
the quaternion theory8.9 of rotations than has 
hitherto been presented. A more compelling reason 
for its inclusion here is that it can be taken over, in 
the next section, with little modification into the 
theory of orthogonal transformations (complex rota
tions) in a space of three complex dimensions. 

A spatial rotation is a real linear transformation 
in three-dimensional Euclidean space of the type 

(86) 

which leaves invariant y2 = ykyk. The transformation 
coefficients thus satisfy 

RHR'k = Oi\ 

i.e.,rthe matrix~ R satisfies 

RR = 1, 

(87) 

(88) 

from which it follows that det R ±l. Matrices 
R with det R = + 1 (-1) describe proper (improper) 
rotations. Improper rotations are not of interest 
here and the term spatial rotation is used without 
qualification (as in the early part of the section) 
for the det R = + 1 case. For this case, one gets, 
using (13) and (88), 

(89) 

Operating on Eq. (89) with e/mr and using Eq. (8) 
to simplify, leads to 

(Tr R) O"'k - Rmk = (Tr R)Rkm 
- RkBR.... (90) 

and, hence by taking traces, to 

2 Tr R = (Tr R)2 - Tr (RR). (91) 

Now, one associates with each point y' of ordinary 
space a matrix Y 

with inverse relation 

y' = l Tr (T'Y), 

and considers the transformation 

Y ~ Y' = A Y A -1, 

(92) 

(93) 

(94) 

with A unitary and unimodular. Equation (94) 
leads to 

(95) 

and, hence, to 

R i
; = lTr(T'ATiA-1

) == R(A)'i. (96) 

One can easily prove that R(A) is real, has deter
minant +1, and that 

(97) 

so that (96) explicitly gives the 2 : 1 homomorphism 

±A ~R(A) (98) 

of SU(2C) onto Ra. From (95), one obtains, using 
Eq. (35), 

(99) 
= 2A(Tr A-1

) - AA-1
• 

Now, a unitary unimodular matrix A can be written 
in the form 

A = aO + iakTk 

with aO, ak real, so that 

Tr A = 2ao = Tr A -1 

follows. Hence (96) with the help of (35) gives 

Tr R = (Tr A)(Tr A -1) - l Tr (AA -1) 

= (Tr A)2 - 1. 

(100) 

(101) 

The inversion of (96) now follows from Eqs. (99) 
and (101) in the form 

1 + R'iT'Ti 
±A = [4(1 + Tr R)]1/2 (102) 

The check that A, as given by (102), satisfies (96) 
depends on the use of identities (90) and (91). 

The subject of pure Lorentz transformations is 
taken up next. A pure Lorentz transformation of 
velocity v in the positive direction of the unit spatial 
vector n can be given in the form 
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X'D = x D cosh X + x·n sinh X (103) 

x' = x - x·nn(l - cosh x) + xDn sinh X, 

with cosh X = liP, sinh X = viP, tanh X = v, 
fJ = (1 - V

2
)1/2. This may be put in the form 

with 

LDD = coshx, Lko = _LDk = nk sinh X, 
(104) 

Lii = gii + nii(l - cosh x). 

From (104) one sees that a matrix Lp of L, which 
describes a pure Lorentz transformation, satisfies 
Lp = L. The converse is not so, however. The 
following theorem is proved in Tolhoek's2 lectures: 
A matrix Lp of the restricted Lorentz group L, 
which satisfies Lp = L p , describes either a pure 
Lorentz transformation or else a pure Lorentz 
transformation followed by a rotation of angle 11' 

about the direction of the pure Lorentz transforma
tion. The lack of a clearcut criterion for recognizing 
a pure Lorentz transformation can be irksome in 
practical work on Lorentz transformations. From 
Eq. (70), one finds that the matrix A which corre
sponds to the pure Lorentz transformation (104) 
is given by 

A = cosh !x - sinh !x~·n == A(x, n). (105) 

The notation puts the "amount" X before the di
rection n to distinguish a pure Lorentz transforma
tion from a rotation [cf., Eq. (85)]. Matrices of the 
form (105) are Hermitian. From (85), one obtains 
A(n, 11'), which describes a rotation of angle 11' about 
the direction n of the pure Lorentz transformation 
(104), in the form 

A(n, 11') = -i~·n. (106) 

Since A(x, n)A(n, 11') is not Hermitian, one concludes 
that A is Hermitian if and only if it corresponds 
to a pure Lorentz transformation-a result which 
makes the unimodular matrix description of Lorentz 
transformations useful practically. 

The above discussion of spatial rotations and 
pure accelerations allows a complete characteriza
tion of the elements of L. This is because the general 
element of L can be expressed uniquely in the form 

(107) 

with L B , L p , respectively, describing a spatial rota
tion and a pure Lorentz transformation. For a proof 
of this statement the reader is referred to the book 

by Fock.2 The corresponding statement for the 
general element A of SL(2C) is that it can be 
uniquely expressed as the product 

A = UH (108) 

of a unitary matrix and a positive28 Hermitian one. 
To prove this, one notes that the matrix AtA is 
positive Hermitian, and sets AtA A(2x, n). If 
one now takes 

H = A(x,n), (l09) 

then the fact that 

U = AA(-x,n) (110) 

satisfies 

UtU = A( -X, n)A(2x, n)A( -X, n) = 1 (111) 

completes the proof. If LB = L(U) and Lp = L(H) , 
then it follows that L = LBL" = L(U)L(H) = 
L(UH) = L(A). 

Some comment on the fact that positive H is 
required in the statement (108) has to be made. 
It corresponds to the indicated bracketing in the 
following 

L = LBLp +-+ ±A = (± U)H (112) 

which is allowed because of the two valuedness of 
the homomorphisms of SL(2C) to Land SU(2C) 
to Ra. The fact that one has arbitrariness of sign 
for spatial rotations and restricted Lorentz trans
formations reflects the fact that these constitute 
doubly-connected topological groups,29 with the 
groups SU (2C) and SL(2C) isomorphic to their 
covering groups. Likewise the nonarbitrariness of 
sign in the case of pure Lorentz transformations 
reflects the fact that these transformations are a 
simply connected set. 

In order to exhibit the practical utility of the 
unimodular matrix description of Lorentz trans
formations, the case of the product of two nonparallel 
pure Lorentz transformations is to be examined. 
Thus, it is sought to write 

A = A(XlI n1)A(X2, nz) (113) 

in the form 30 

A = A(n, 8)A( -X3, na). (114) 

28 Positive here means "with positive eigenvalues." Thus, 
A(x, n) as given by (105) is positive Hermitian, while - A(x, 
n) is not. 

U For discussion of the topological properties of H, and L, 
see the lectures of Tolhoek. 2 For the concept of covering 
group, see also the book of Pontrjagin [L. S. Pontrjagin, 
Topologische Gruppe (B. G. Teubner, Leipzig, 1958»). 

10 The minus sign is present to allow subsequent formulas 
to be presented in a symmetric form. 
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The fact that A(o, (J) turns out, below, not to be 
the unit matrix gives a further indication that the 
set of all pure Lorentz transformations do not 
possess the group property. To find Xa and Oa, one 
calculates AtA = A( -2xa, oa), easily obtaining 

cosh Xa = cosh XI cosh X2 + sinh XI sinh X~I '02, 
(115) 

and 

-sinh XaOa = sinh XIOI + sinh X2 cosh XI02 

+ sinh xI(cosh X2 - 1)0100~2' (116) 

Introducing Vi = ViOi,al fJi = (1 - V//
12

, Vi = 
tanh Xi, one can put (115) and (116) into the form 

fJlfJ2 = fJa(1 + VI 0 v2) (117) 

-va(1 + Vl oV2) = VI + V2 

+ [(1 - fJ2)/V2
2]V2 A (V2 A VI)' (118) 

Equations (116) and (117) agree with Eqs. (16.11) 
and (16.07) of Fock's book.2 These equations how
ever are derived differently, and his Eq. (16.07) is not 
in so neat a form as (118). In the case when VI 
and V2 are parallel, Eq. (118) reduces to the well
known Einstein addition theorem for parallel 
velocities 

(119) 

parallel to n 1 A Oll and that (J is given by 

(J 1 + cosh XI + cosh X2 + cosh Xa cos - = . 
2 4 (cosh XI/2)(cosh xd2)(cosh Xa/2) 

(124) 

7. THE GROUP O. 

Orthogonal transformations in a complex space 
of three dimensions are often referred to as complex 
rotations. Their relationship to the transformations 
of the real restricted Lorentz group can be exhibited 
in the following manner. 

From a pair of orthogonal four-vector p~ and q~ 
one builds the quantity 

(125) 

where 

(126) 

Under Lorentz transformation L = L(A), one knows 
that 

or 

so that 

P -+P' = APAt 

Q -+ Q' = AQAt 

-Va = (VI + v2)/(1 + Vl oV2)' 

From (118) and (117), one easily finds 

fJ2fJa = fJI(1 + v2 0va), 

PQ-I -+ p'Q,-1 = APQ-I A -I. 

(120) If one writes PQ-I in the form 

(127) 

fJafJI = fJ2(1 + Va 0 VI) . (121) PQ-I = TV = 1:'z, (128) 

Introducing 0 1
002 = cos CPa, etc., one can write with 

(117), (120), and (121) in the form Z = pOq _ qOp - ip A q, (129) 

sinh XI sinh X2 sinh Xa 
sin CPI = sin CP2 = sin CPa • (122) 

The resemblance of (115), beside which one can 
place the analogous pair of formulas with 1, 2, 3 
permuted cyclically, and (122) to the cosine and 
sine rule for a spherical triangle is very marked. 
Various other formulas may be proved in analogy 
to the usual results of spherical trigonometry,32 e.g., 

cos CPa = cos CPI cos CP2 - sin CPI sio CP2 cosh Xa' (123) 

For further remarks on the subject and references 
to some early papers by Sommerfeld, the reader 
is referred to a paper by Wick.aa 

Finally, one calculates A(o, (J) finding that 0 is 

al No summation. 
as I. Todhunter, G. Leathem, Spherical Trigonometry 

(MacMillan and Company, Inc., London, 1901). 
as G. C. Wick, Ann. Phys. (New York) 18, 65 (1962). 

(130) 

then (127) reads as 

1:°Z -+ 1: o Z' = A1: o zA- 1
• (131) 

Equation (131) can be seen to describe transforma
tions of the complex three-vector z which preserve 
its norm (130), i.e., rotations in a complex space 
of three dimensions. Setting 

(132) 

one is able to take over the work of Sec. 6 on real 
rotations even though now CR is not real and A is 
not unitary. In particular 

•• Since p and q are orthogonal, either both are space-like 
in which case Z2 is negative, or else one is time-like and the 
other space-like, in which case Zl is positive. 
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and 

1 + T'T;(Rii 
±A = [4(1 + Tr (R)]1/2 (134) 

The relationship of the group 0 3 to L can be deduced 
directly. Equation (133) shows that there is a 2 : 1 
homomorphism ±A ~ (R(A) of SL(2C) onto 0 3 , 

so that, from the work of Sec. 5, it follows that 0 3 

is simply isomorphic to L. Explicit formulas for 
this isomorphism arise from the insertion of (69) 
or (70) into (133). 

When A is unitary and hence corresponds to a 
spatial rotation in Minkowski space, (R evidently 
reduces to the real matrix R describing this rotation. 
The real and imaginary parts of z transform sepa
rately as real three-vectors. For A Hermitian, (R 
will not be real, so that the real and imaginary 
parts of z are mixed by a pure Lorentz transforma
tion in Minkowski space. Inserting 

A = A(x,n) 

into (133) gives, with the aid of Eqs. (22) to (24), 
the result 

(R 0; = 00; cosh X 

+ n in;(1 - cosh x) + it:iHn l sinh x. (135) 

In terms of the matrices Ti of Eqs. (79)-(81), one 
can write this as 

(R = exp [-x(n·T)]. (136) 

To obtain the relationship of the general element (R 
of 0 3 to the general element of L, one writes the 
latter in the form 

where R is real orthogonal and K Hermitian pure 
imaginary. That K = -x(n' oT) is Hermitian pure 
imaginary in the representation (81) of T is easily 
seen to be the case. 

As an illustration of the formalism just developed, 
one may derive the transformation properties with 
respect to L of the electromagnetic field-vectors, 
E and H. Those vectors are related to a four-vector 
potential A" by the equations 

with 

E = aAo - aOA 

H=aI\A 

a" = (aO, a) = a/ax". 
Since the condition 

(140) 

(141) 

(142) 

is imposed on A", one can see that a" and A" play 
the role of p" and q" in the general discussion, and 
that 

z = -(E + tH)o (143) 

Thus, it follows, from the fact that the (complex) 
norm of z is preserved by complex rotations, that 
the quantities 

E·H (144) 

are scalar with respect to L. With z as given by (144), 
(R as given by (135), one finds from the real and 
imaginary parts of Eq. (132), that E, H -+ E', H' 
under pure Lorentz transformation v = tanh X 

along n with 

E' = (1/,B)[E + v 1\ H - (E.vv/v2)] + EovvN, 
(145) 

with LR and L,,, respectively, describing a spatial H' = (1/,B)[H - v 1\ E - (H·vv/v
2
)] + H·vv/v

2
, 

rotation e about n, and a pure Lorentz transforma- (146) 
tion X along n'. Then one gets and v = vn. These results agree with those obtained 

(R[A(n, e)A(x, n')] = (R[A(n, e)](R[A(x, n')] 

= (R[A(n, e)] exp [ -x(n' .T)] 

= exp [ie(n·T)] exp [-x(n'·T)]. 

(137) 

in Fock's book2 [Eqs. (24.37), (24.38)] by rather 
different methods. 

The relationship of 0 3 to L is next investigated 
(138) by viewing these groups as subgroups of the complex 

Lorentz group. The discussion is made in terms of 
a reformulation, using the methods of Sees. 3 and 5, 
of the work of Wightman2 on the 2 X 2 unimodular 
matrix description of the latter group. A complex 
Lorentz transformation is a linear transformation 
of the type 

The form (137) of this result corresponds in the case 
of 0 3 to the results L = LRLp and A = UH pre
viously noted for Land SL(2C). As in the case of 
SL(2C), it illustrates a general matrix theorem, one 
which Gantmacher15 states as follows. A complex 
orthogonal matrix (R can be uniquely resolved into 
the form (147) 

(139) of the points z" of a complex space with metric (2), 
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which leaves invariant the quadratic form 

The related matrices £ satisfy 

£1,£ = I. (148) 

with I. as before, Eq. (41). The values ±1 are both 
allowed for det £, but only the case + 1 is of interest 
here. 

With each point zP, one associates a matrix 

and considers transformations of the form 

Z ~ z, = AzE 

(149) 

(150) 

with A and B independent unimodular matrices. 
They preserve gP' ZpZ, and hence provide a mapping 
of the complex transformations (147). Equation 
(150) gives 

(151) 

and hence 

As in Sec. 5, one proves that det £ = + 1 and that 

£(Al' B 1)£(A2, B 2) = £(AIA2' BIB2)' 

To express A and B in terms of £, one uses Eq. (151) 
and the result 

(153) 

which follows from it, using (£-1)1" £ Pl'. With 
the help of Eq. (34), Eqs. (151) and (155) lead to 

£I',rl'p' = 2A(Tr 13), (154) 

£I'.p'rl' = 213(Tr A), (155) 

£ppr' pP = 2A -\Tr 13), (156) 

£p.pPr' = 213-1(Tr A), (157) 

the results Tr 13-1 = Tr 13, Tr A-I = Tr A, having 
been used in (156) and (157), respectively. Com
bining these equations in pairs gives the desired 
results 

±A = £p.rPp'/[£a/l£'Yara/rap'Y]1/2 == ±A(£), (158) 

±E = £ppp'rP/[£a/l£'Yapar/l/r'Y]1I2 == ±13(£). (159) 

Equations (158) and (159) bear the same relation
ship to the results given by Wightman2 as Eq. (69) 
does to Eq. (70), above. 

One notes that 

A(£) t = E(£*) (160) 

follows from (158) and (159), so that real £ implies 
At = 13 as required to reproduce the formalism of 
Sec. 5. If one sets £°°=1, £011:=£·°=0, .c'f=-ffi.;;, 
and 13 = A-I, one can likewise reproduce the 
formalism for 0 3 developed earlier in this section. 
One observes how the different restrictions, neces
sary to give the (isomorphic) unimodular description 
of Land 0 3 , operate 

13 ~ A-I 

and become equivalent in the subsequent restriction 
to the group Ra of spatial rotations, which are 
described by unitary matrices A. 

The reader is referred to the lectures of Wight
man2 for the use to which he puts the theory of 
complex Lorentz transformations, described above. 

8. TWO- AND FOUR-COMPONENT SPINORS 

The formalism of Secs. 3 and 5 is intimately con
nected with the calculus of two-component spinors 
as devised by van der Waarden35

•
3 and systematically 

discussed in references 18 and 19. It is the view of 
the present author that this theory can be ade
quately presented within the ordinary methods of 
matrix algebra and that one thereby avoids, or 
rather subordinates, the algebraic complications 
associated with spinor indices. Here two-component 
spinors are introduced and the passage to four
component spinors, which makes possible the repre
sentation of inversions, is effected. This serves to 
relate present work to the description of Lorentz 
transformations in terms of Dirac matrices as given 
in text booksl6 .17 on field theory. 

Let q, be a two-component (column)36 spinor, 
which under L = L(A) transforms according to 

q, ~ q,' = Aq,. (161) 

If one wrote q, as q,z, say, with x a spinor index, 
then one would write q,*, x, x* as q,z, q,z, q,%, with 

x = rq" q, = -rx (162) 

since r is exactly the matrix usually used as metric 
spinor to raise and lower spinor indices. Under 
L(A), the spinors q,*, x, and x* transform according 
to 

q,* ~ q,'* = A *q,* , 

X ~x' = X-IX, 

x* ~ x'* = A t- I
X*. 

(163) 

(164) 

(165) 
35 B. L. van der Waerden, N achr. kg!. Gee. Wise. Gottingen 

100, (1929). 
36 It will always be evident from context when a spinor is 

to be regarded as a row of a column matrix. 
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Since A is not unitary, it is evident, from (161) 
and (165), that the spinors cp and x* transform 
according to inequivalent (irreducible) representa
tions of the restricted Lorentz group. It is further 
true that one cannot describe a representation of 
the full Lorentz group in terms of either a spinor 
transforming like cp or a spinor transforming like x*. 
Since the elements of the subsets II to IV of Lorentz 
transformations can be generated in the form (50) 
from the elements L(A) of the restricted group, 
one need only, to obtain a representation of the 
full group, adjoin (in somewhat ad hoc manner) 
the following transformation laws to the laws (161), 
(163)-(165). Under space inversion I. 

respectively, where E(X) = +1(-1) for X> 0 « 0). 
In particular, one notes that under I, 

p~p' = -p 
(173) 

A" ~ A'" = (_AD, Ak), 

under Ie 

p~p' = P 
(174) 

A" ~ A'" = (_AD, Ak), 

and under I,e 

(175) 

cp ~ ±ix*, 

under time inversion I. 

cp ~ ±x*, 

x* ~ ±icp, (166) If cp, cp' are spinors with law (161) of transformation 
under the restricted Lorentz transformation L(A), 
and x, X' are spinors related to them by (162), one 

(167) may readily verify that the quantities 

and under the combined inversion I,e = I,Ie 

cp ~ ±icp, x* ~ =Fix*· (168) 

Two remarks are necessary in conjunction with 
(166)-(168). Firstly, the presence of the factor i 
in (166), (168) is not an essential ingredient of the 
transformation law: A perfectly satisfactory repre
sentation of the inversions is obtained without it. 
It is present simply to allow agreement with the 
work of Schweber.16 Secondly, the signs within each 
of the Eqs. (166)-(168) are coupled, but one may 
associate upper and lower lines of (166) with upper 
and lower lines of (167) and (168) in eight different 
ways, thus obtaining eight nonequivalent representa
tions of the inversions. This is associated with the 
fact that the full Lorentz group has eight distinct 
covering groups. The reader is referred to the 
papers by Shirokov37 and to the lectures by Wight
man2 for a discussion of the topic. In what follows, 
for simplicity, let attention be confined to the case 
of upper signs throughout Eqs. (166)-(168). 

Next, the formation of various tensorial quantities 
from two-component spinors is briefly considered. 
Under general element L of the full Lorentz group, 
scalar, pseudoscalar, vector, and axial vector are 
defined according to 

cp*x'* ± Xcp' (176) 

are, respectively, scalar and pseudoscalar in the 
sense of (169) and (170). Likewise the quantities 

(177) 

are the components, respectively, of a vector and 
an axial vector in the sense of Eqs. (171) and (172). 
Under the element L = L(A) of the restricted 
group, one sees that 

cp* p"cp' ~ cp* A t p" Acp' = L" .CP* p" cp' , 
(178) 

where Eqs. (75) and (65) have been employed. 
Under the element I.L = I,L(A) of subset II, 
one finds that 

cp ~ Acp ~ ir(Acp)* = iA t-,x*, 
L 1. 

x ~ A t-,x* ~ -ir(A t_,x*)* = iAcp, 
(179) 

L 1. 

and uses 

[I,L(A)]".p· = I,\At/A = AtT"A, 

[I,L(A)]".T· = I.\A-'/'A t- I = A-1p"At-t, 

to show that 

S~S' = S (169) cp* p"cp' ~ xA -I p" A t-,x'* = (1,L)",xT'x'*, 
(180) 

P ~ P' = e(LOO)e(det L)P (170) xT"x'* -t cp* A t T" Acp' = (I ,L)".cp* p"cp'. 

V" ~ V'" = L". V' (171) 

A"~ A'" = e(LOO)e(detL)L".A·, (172) 

I7lu. M. Shirokov, Nuclear Phys. IS, 1 and 13 (1960). 

Equations (178), (180), and similar Eqs. for ele
ments of subsets III and IV confirm the statement 
made regarding the quantities (177). 

It is immediate to pass from the above work to 
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the four-component formalism. In agreement with can be united to read as 
CorsonI8 and Shirokov38 one forms a four-component 
spinor '11 according to SeA) \-Y·'Y")S(A) = L(A)\C'YV) , 

'11 = [:*l (181) 
or 

(186) 

Under restricted Lorentz transformation L(A), '11 In the representation (184), Eqs. (166)-(168) become 

transforms according to 

'11 ~ '11' = S(A)w, 

with SeA), from (161) and (165), given by 

(182) 

'11 ~ ±i'Y°w, 

'11 -t ±i'Y°'YIiq" 

'11 -t ±'YIiq" 

(187) 

(188) 

(189) 

SeA) = [A 0 ] 
o A t - 1 

(183) and the scalar, pseudoscalar, vector, and axial 
vectors of Eqs. (176) and (177) become 

Then, if one introduces Dirac matrices 'Y" in the 
represen ta tion 

'YO = [:~} 'Yk = 

'Y
5 

= -'Y
1
/'Y

3
'Y

0 
= i [~ 

satisfying 

the results (75) and (65) 

A tp" A = L(A)".p' 

A -IT" A t-l = L(A)".T· 

(184) 

(185) 

38 Iu. M. Shirokov, Soviet Phys.-JETP 6, 664 (1958). 

w*i')'°'Y5w, , 
w*i'Y°'Y5'Y"'IJI" . 

(190) 

(191) 

Further, for A = A(n, 0) and A = A(x, n) as 
given by Eqs. (85) and (105), SeA) takes on the 
respective forms 

Sen, 0) = cos!O + ! sin !OEiik'Yi'Yink , (192) 

Sex, n) = cosh !x + sinh !X'Y.'Yknk. (193) 

Equations (182) and (186) to (193) constitute a 
four-spinor irreducible representation of the full 
Lorentz group for a general set of Dirac matrices 
satisfying Eq. (185), and agree exactly with the 
corresponding equations (in Sees. 4c and 4h) of 
reference 16. Use of SeA) in the form (183) is, 
naturally, only proper in the representation (184) 
of the Dirac matrices. 
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A criterion is proposed to distinguish between the singular and nonsingular portions of the Landau 
surface on the physical sheet. The set of diagrams under consideration are those containing a single 
loop. A proof of the Mandelstam representation for the four-point function is given based on this 
criterion. 

THERE are several difficulties involved in an 
. investigation of the analytic structure of the 

Slmatrix from the point of view of perturbation 
theory. The discussion of apparently simple graphs 
can be quite involved and can require separate 
investigation of many special cases.1 The number 
of graphs to be studied increases very rapidly with 
the number of both internal and external lines. In 
the spirit of Landau it seems wiser to use perturba
tion theory as a guide to conjecturing the analytic 
structure of the "real" S matrix rather than to 
disentangle the full details of perturbation theory 
itself.2 The usefulness of the Mandelstam representa
tion,S despite the existence of perturbation theoretic 
counter examples,4 serves to emphasize this point. 
To this end it seems reasonable to provisionally 
assume that the n-point function has the analyticity 
of the n-sided polygon diagram. This approach has 
been followed in the preliminary approaches to the 
5-point function. 5 This hypothesis disposes of the 
internal lines. In the remainder of this paper an 
attempt is made to give a unified and concise 
treatment of the polygonal diagram that shall be 
called the n-point function. 

The n-point function F that is the analytic ex
pression for the graph of Fig. 1. Mter the con
ventional manipulations it can be reduced to the 
form 

Fn(Xi;) = C i' ... i' 
dU1 ... du" 0(1 - U1 - ... - u,.)P(u;) 

X [~ 2 + ~ .. -2 , LJ U; 2 LJ U.UjX;;] 

the u's are related to the Feynmann a's by 

Ui = (aJ m;) I L: (a.1 m.) . 
1 J. Tareki, J. Math. Phys. 1, 149 (1960). 
I L. D. Landau, Nuclear Phys. 13, 181 (1959). 
as. Mande1stam, Phys. Rev. 112, 1344 (1958)' 115 1741 

(1959); 115, 1752 (1959). ' , 
'R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. 

C. Taylor, J. Math. Phys. 2, 656 (1961). 
t L. Cook and J. Tareki, J. Math. Phys. 3, 1 (1962). 

and Xi; is given by 

Xi; = [m~ + m~ - (L: p.)2]/2m;m; 

where the summation is carried out over all the 
external momenta between i and j (both directions 
around the polygon are equivalent). The factor P(u;) 
comes from the Jacobian of the transformation from 
a to u, and is a polynomial in u. Its role in deter
mining the analyticity of F will be ignored. 

If n ~ 6, all the Xii are not independent but 
there exist a variety of geometrical constraints be
tween them. The n-point function in these cases 
has only contracted singularities.6 This phenomenon 
is closely related to the result that the leading 
singularities of the 5-point function are poles and 
not branch cuts.7 In the ensuing analysis the Xii 
will be assumed independent for convenience, but 
only the analysis of the 3-, 4-, and 5-point functions 
will be given. 

The singularities of F" are known to lie on a set 
of [n(n - 1)/2] - 1 dimensional manifolds (Landau 
surface) specified by the vanishing of the deter
minant Ll,,, whose diagonal elements are unity and 
whose ijth element is X;; for i ¢ j, or by the vanish
ing of any of the principal minors of An. In fact 
each point of these manifolds is singular on some 
sheet of F ".7 

There is a set of 2,,-1 interchanges of sign among 
the Xii that leave A" invariant. Suppose that all 
the elements that have a subscript i (either first 
or second) are changed in sign. This is the same as 
changing the sign of the ith row and the ith column, 
the diagonal element 1 would have its sign changed 
twice or equivalently not at all but it carries no 
subscript. This transformation may be carried out 
for all n values of the subscript. It may be applied 
successively to two, three, or more indices. If all 
these sign changes are counted, there is a total 
of 2" sets of values of Xii related by sign changes 

• L. Brown, Nuovo cimento 22, 178 (1961); P. V. Land
shoff, Nuclear Phys. 20, 129 (1960). 

7 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 

lIao 
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that leave 11 .. unaltered. However, not all of these 
are distinct. If, for example, the sign of all rows and 
columns is changed, it is equivalent to no sign 
changes. Similarly there are always two ways to 
achieve any sign permutation and so there are only 
2"-1 distinct changes. In particular any root Xii 
such that 11 .. (x,;) = 0 gives rise to 2"-1 related 
points on the Landau surface. 

The equation 11" = 0 is a quadratic in any of 
the Xii 

(not summed on i and j), 

where the coefficients A,;, Bij, and Cij depend on 
all the variables but Xi;' According to a theorem of 
Tarski1 

where L. is the n - 1 rowed principal minor formed 
by crossing out the ith row and ith column of 11. 

If Xii = Xii is a root of 11 = 0 then the n(n - 1)/2 
equations 

Xii = [-Bli ± (£,£;) 1I2JI A,; (1) 

must also be true. The quantities A, B, and £ 
are the quantities A, B, and L evaluated at X = x. 
It is clear that both values of the sign in (1) cannot 
be correct. It has been shown that if Xii is a root 
of tJ. = 0 then other roots can be found permuting 
the signs of some rows and columns of 11. Under 
these permutations the principal minors, L and A 
are invariant for the same reason that tJ. itself is 
invariant. The B's may change signs. Thus by 
permuting the signs of the Xii the two possible 
signs of the radicals are exhibited. 

For complex values of the variables x, it will 
be more convenient to define each of the roots 
(L,)1/2 as a two valued function (L,)1/2(S). The 
variable (S) in the expression (L,)1/2(S;) is a 
dichotomic variable whose values will be taken as 
plus (+) and minus (-). These values of S, will 
specify the sign of the real part of the square root 
and the cuts will be taken along L, real and negative. 
In (1) the negative sign is suppressed and the 
variables S, allow for the double-valued character 
of the square root. There is an ambiguity in the 
set of equations (1) since every S, may be changed 
and the equations will still be satisfied. At a point 
Xii such that 11 .. (Xji) = 0, the values of the S· 
in (L,)1/2(S,) may be chosen to be the same ~ 
each of the (n - 1) places that this radical occurs. 
Thus the point Xii is characterized by a set of values 

FIG. 1. The graph 
for the n-point 
function. 

of the S,. More properly, because of the sign am
biguity at each point Xij, all of the S; are grouped 
into two classes; the members of either class may 
be chosen plus and then the others will be minus . ' 
or VIce versa. 

To exhibit the possibility of choosing S; to be 
the same each time that it occurs first choose SI 
to be + and the other S, to be fixed by the equations 
for Xu through Xl ... It must now be shown that the 
remaining equations are consistent with this assign
ment of signs. Consider the expression 

(AliXU + .B1i)(Al;Xl; + .Blj)(A,;Xii + Bii) 

= £1<L,)1/2(£;)1I2(£,)1I2(£;y/2 (2) 

that arises by solving (1) for the square root and 
m,":ltiplying toge!her the results for Ii, I;, and ij. 
It IS clear that Ll comes out of the radical with a 
~lus sign since in both -t:,he expression for Xu and Xli 
It was specified that (Ll)I/2, should be on its first 
sheet. The first (L.)1/2 and (L;)1/2 that occur are 
those that arise from the Xli and the Xij equations 
and their sheets are specified by consistency with 
the convention for (L1 ) 1/2. It must be shown that 
the second pair (L.)1/2, (L;)1/2 can be chosen so 
that they are on the same sheets, respectively, as the 
first pair. This will be true if the right-hand side 
of (2) is + £1£'£; and not - £1£'£;' Since there 
is a discontinuous change from one sign to the other 
it will be sufficient to show that the plus sign obtains 
at one point P to show that it is generally valid. 
By continuity there is a neighborhood of P in which 
(2) holds with a plus sign, but since both sides are 
polynomials it is an identity and holds everywhere. 

A u~eful ~oint to .?hoos~ is Xii _= -l/(n - 1). 
For this chOIce The A, 13, C, and L are independent 
of i and j and are given by 

A = -2(n - 1)2-"n"-s 
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B = (n - 2)(n - l)l-nn - 3 

C = 2(n - 1) (l-n)n,,-a 

L = (n - 1)1-"n,,-2. 

It can easily be seen that (2) is satisfied with the 
radicals chosen consistently from a single sheet. 

Thus at each point on the Landau surface if 
(Ll)I/2 is put on its first sheet the other (n - 1){L;)1/2 
are fixed on either their first or second sheets. The 
condition can be stated in a more homogeneous 
way. At each point on the Landau surface some s 
of (L) 1/2 are on the same sheet and the other 
(n - S)(L)I/2 are on the other sheet. It is irrelevant 
which of the two sheets each group is on, but rather 
the set of L's which are grouped together. There 
are a total 2"-1 such groupings of the (L)I/2'S. Each 
point x of the Landau surface corresponds to one 
and only one such configuration. The boundary 
between configurations occurs when an L vanishes 
or along the cut that connects the surface L; = 0 
to infinity. The surfaces L; = 0 are the Landau 
surfaces for the n - 1 point function in some sub
set of the variables, and the cuts for these n - 1 
point functions will be taken in the same way as 
those for the L; are taken. 

To complete the proof, it should be shown that 
none of the cuts of F associated with the n - 2-
point, ... 2-point singularities divide any of the 
2,,-1 regions into two or more parts. The convention 
for taking all the cuts will be 1m {L; I = 0 and 
Re {L; I < O. These cuts join the points L; = 
A,,-l = 0 to infinity and reduce to the usual normal 
threshold cuts for the two point function. 

In the region IRe {xiill < 1 and 1m {x;il = 0 
there is a family of closed surfaces 8" consisting 
of the points of the Landau surface that are closest 
to the origin in the following sense. A point P is 
a point of 8" if the coordinates Xi{ of P satisfy the 
Landau equation and if the straight line joining P 
to the origin does not intersect the Landau surface. 
For example, the surface 8 2 is a hypercube with 
sides given by Xii = ± 1. The important property 
of this family of surfaces is that 8" lies inside or 
touches 8 .. - 1, That is if a straight line is drawn from 
the origin in any direction it passes through a point 
of 8" before or at the same time it reaches 8,,-1' 
Since A.. equals one at the origin independently 
of the value of n the assertion may be proven by 
showing that An ~ 0 at a point of 8,,-1' This follows 
readily since on 8 .. - 1 one of the radicals L; in (I) 
will vanish and A" is then a perfect square. If A" 
is written this way its coefficient is negative. Thus 

by continuity there must be a point of 8" closer 
to the origin than the point of 8,,-1' 

The points of contact between 8 .. - 1 and 8" 
separate 8 .. into the 2,,-1 regions. This portion of 
the Landau surface is separated by the singularity 
surface 8"-1 rather than the branch cuts coming 
from 8,,-1' 

No cuts of the {n - 2)-point or lower function 
can intersect 8" and the points of 8"-2 or lower 
surfaces simultaneously points of 8" are a manifold 
of sufficiently low dimensionality (since they must 
simultaneously belong to at least 8", 8,,-lt and 8"-2) 
that they cannot separate the points of 8". 

8" lies closer to the origin than all the cuts of 
the lower functions and if it is possible to get to 
the end of a (n - 2)-point or lower cut there is a 
path around it. The present proof is incomplete 
because it has not yet been possible to show the 
existence of a path from an arbitrary point of the 
Landau surface to a point of 8". 

Let the values of the U; for which aDlau; = 0, 
at the point Xii of the Landau surface be u;. At 
the point X~j where the sign of all terms with an 
index k are changed the U have the values u~ = u; 
for i ;z!i k and u~ = -Uk' Since it is necessary to 
have all the x's real and positive to have a singularity 
on the physical sheet for those singularities nearest 
to the Euclidean region it follows that only one 
of the 2,,-1 regions on the Landau surface is singular 
on the physical sheet. Since the regions are bounded 
by the (n - I)-point function branch cuts an entire 
region is singular if one point of it is. 

The point Xi{ = -I/(n - 1) is singular on the 
physical sheet. The corresponding u's are lin and 
they are real and positive. The denominator D is 
positive for values of Xii in the neighborhood of 
Xii = -I/{n - 1). For simplicity take all the x's 
to be equal. Then the denominator D is given by 

D = LU! + X LU,U j • 

To establish that this point is singular it is sufficient 
to observe that D is positive if X is greater than 
-I/{n - 1). Thus the hypercontour of integration 
is undistorted until the point Xii = -l/{n - 1) 
is reached. To show that D is positive, observe that 
it is a quadratic form in the u's and that the eigen
values are 1 - X repeated n - 1 times and a simple 
eigenvalue at 1 + nx - x. The multiple eigenvalue 
becomes negative for positive values of X where D 
is positive. The simple eigenvalue vanishes at X 
and is negative for more negative values of x. At 
the point Xii = -11 (n - 1) all the radicals are 
taken on the same sheet. Thus all those points of 
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the Landau surface that have all the radicals taken 
on the same sheet will be singular on the physical 
sheet. 

As an illustration of the utility of these notions 
some applications are made to the three-, four-, 
and five-point functions. 

In the case of the three-point function there are 
three variables Xu, Xu, and X23' It is convenient to 
write them as 

Xl2 = cosa, Xu = cos fJ, Xu = cos 'Y' 

consistent set of solutions for the three Eqs. (5). 
Now if a, fJ, and'Y have real parts between 0 and 11' 

the real parts of sin a, sin fJ, and sin 'Yare all positive 
and all three radicals have been taken on the same 
sheet. 

If in the four-point function X 12, X23, Xa4, and XI4 

are chosen real and less than one in absolute value 
the analyticity in Xi3 and X24 which play the role 
of the usual scalar invariants 8 and t may be dis
cussed. The appropriate three-point cuts are given by 

In terms of a, fJ, and 'Y, the equation of the Landau L1 : 1m {X24} = 0 
surface may be written 1 - X~3 - X~4 - X~4 + 2X23X24X34 < 0, 

[cos (a + fJ + 'Y) - 1][cos (-a + fJ - 'Y) - 1] 

X [cos (a - fJ + 'Y) - 1] 

X [cos (-a + fJ + 'Y) - 1] = 0 (3) La: 1m {xu} = 0 

The use of elementary trigonometric identities re
duces (3) to 

(1 - cos2 a - cos2 fJ - cos2 'Y 

+ 2 cos a cos fJ cos 'Y)2 = 0, (4) 

which is the Landau equation. 
There are four possible relations between a, fJ 

and 'Y each of which will serve to make one of the 
four factors of (3) vanish. 

These are 

a + fJ + 'Y = 2n1l' 

a + fJ - 'Y = 2n1l' 

a-fJ+'Y=2n1l' 

-a + fJ + 'Y = 2n1l'. 

The conventional results follow if the solutions for 
which the real parts of the variables a, fJ and 'Y 
are restricted to lie between 0 and 11'. The region 
for which a + fJ + 'Y = 211' is the region that is 
singular on the physical sheet.2 The three solutions of 
(4) are 

-cosa + cosfJ cOS'Y = (1 - cos2 fJ)I12(1- COS2'Y)1/2 

- cos fJ + cos a cOS'Y = (1 - cos2 a)I/2(1 - cos2 'Y)1I2 

-coS'Y + cos a cosfJ = (1- cos2 a)I/2(1_ cos2 fJ)1I2. 
(5) 

The choice of signs in (5) is dictated by the con
vention established in (1). If a + {3 + 'Y = 211' it 
must be shown that the three radicals are all to 
be taken on the same sheet. In the first equation of 
(5) substitute a = 211' - {3 - 'Y. Then cos a becomes 
cos {J cos 'Y - sin fJ sin 'Y and a consistent choice of 
signs in that (1 - cos2 {J)1/2 = sin {3 not -sin {3 
and similarly (1 - cos2 

'Y)1/2 = sin 'Y. By symmetry 
it is clear that (1 - cos2 a)I/2 = sin a will give a 

(6) 

There is a considerable overlapping of the cuts 
on the Landau surface. If the conditions Ll and L3 
are both satisfied then L2 and L4 will also be satis
fied by virtue of the restriction imposed by the 
Landau equation and, vice versa, the satisfaction 
of L2 and L4 implies the simultaneous satisfaction 
of Ll and La. 

If a path is chosen in the Landau surface that 
penetrates this fourfold cut, there is no change in 
the character of the surface after it passes through 
the cut since all the radicals have changed their 
sheets simultaneously. Only the real values of X 24 

such that one but not both of Ll or L3 are satisfied 
(similarly for X13 and L2 and L,) give cuts across 
which the surface may change from singular to 
nonsingular. The ends of these cuts closest to the 
origin are on the surface 8 4 with X12X23X34 and X14 

fixed, this surface becomes a two-dimensional curve 
(r6 in reference 1), and if there are singularities 
on 8 4 then these will appear on either side of the 
various cuts and there will be complex singularities. 
If 8. is free of singularities then the only singularities 
will be in the fourfold cut. This is the same con
clusion as Tarski.1 

In treating the five-point function it is useful 
to parameterize the equation ~5 = 0 in the following 
way.s If ~5 = 0 then the matrix with the same ele
ments as ~Ii has an eigenvector belonging to the 
characteristic value O. This vector is of course just 

8 F. R. Halpern, Phys. 127, 1819 (1962). 
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the vector formed from the integration variables u, 
in the definition of Fs. If the masses Xi HI and Xli! 

are fixed in the five-point function, it is possible to 
regard the dynamical variables Xl3, X14, X24, X25, and 
X86 as unknowns and solve for them in terms of the 
5 masses and 5Ui' This solution is 

Xu = (-u~ - ~ - u: + u! + u: 

+ 2u,us - 2U1U2X12 - 2u2Uax2a)/2u1ua (7) 

and the four obvious permutations of this equation. 
This parameterization is homogeneous in the u's, 
and thus contains only four free variables. The only 
forbidden values of the U i are zero. Other than this, 
any real or complex values may be used. The value 
u, = 0 corre3ponds to an intersection between a 
four-point singularity L, = 0 and the five-point 
surface. 

An immediate consequence of the fact that the 
dynamical variables have a rational parameteriza
tion is that the L, must have the form L. = ~g, 
where g is independent of i. This follows since if 
this parameterization is substituted in Eq. (1) the 
only irrationality is (L.L;)1/2 and consequently it 

must be possible to take this square root. This will 
only be possible if L. has the suggested form. The 
function g turns out to be quite complicated but f, 
is simply U;.8 

To determine what values of u, correspond to 
singular points of the Landau surface it is necessary 
to determine the sheet of the radical. It may be 
shown by direct calculation that (U~g)I/2 should be 
taken to be u,gl/2 and the sign of the real part of 
this expression must be found. Let the phase of g 
be 8 and of the phase u. be CP •• Then the phase of 
the radical (L;)1/2 is CPt +8/2 and the corresponding 
complex numbers must all be either in the right or 
left half-planes for a singUlarity on the physical 
sheet. If the phase of each u is increased by a, the 
phase of g decreases by 2a, this follows from the 
homogeneity of all expressions. In the particular 
case when the phase of g is 0, all the u's must lie 
in either the left or right half-planes. Changing the 
phases by a rigidly rotates this configuration but 
maintains all theu's in a half-plane. Thus a necessary 
condition for a singularity is that all the U; differ 
in phase by less than 11'. 
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The matrix which enters in the charge conjugation transformation of the usual spinors in 4-space 
is an invariant matrix and is skew symmetric. It is shown that there exists such an invariant matrix C 
for any number of dimensions (and independent of the number of time like dimensions). Its symmetry 
properties depend on the dimension number n modulo 8. With the help of the C matrix one can con
struct, for n = 1, 2, 7, 8 mod 8, an n-dimensional invariant bilinear in the components of a single 
n-dimensional spinor. Some examples are given for n = 2,3, 7. A bilinear baryon invariant is formed 
for a theory with high symmetry. Its existence is closely related to the triality property of 8-space. 

I. INTRODUCTION 

SPINORS iT in n dimensions are multicomponent 
objects which transform in a specific way [see 

Eqs. (13) and (18) below] under transformations 
which leave invariant a quadratic form E' = 
L:7-1 E,X~, where E, = ±1. The signature of E' 
[given by (n - m) + m, where m is the number of 
minus signs or time like dimensions in E'J will be 
immaterial unless otherwise stated. For n = 2" or 
2" + 1, iT has 2' spinor components. In general 
each component may be a function of the Xi' In 
this note we shall only be concerned with the case 
that there is no such dependence (constant spinors). 

We call Dirac matrices in E' a set of n matrices 
T IX, ex = 1, ... , n which satisfy 

ex, f3 = 1, ... ,n, (1) 

where I is the unit matrix. For n = 2" and 2" + 1 
these relations can be satisfied by T's which are 
2' X 2' matrices. 

It is well known l that the r a can be expressed as 
direct products (also called Kronecker products or 
tensor products) of the Pauli spin matrices 

<T~ = [0 1], <T. = [~-i], <T. = [1 0]. (2) 
1 0 tOO -1 

This is quite familiar in the case n 
example, we can take 

T! = Ii~!) X Ii!!), T2 = <T!l) X 1i~2), 

4 where, for 

Ts = <T!1) X <T~2), T, = <T;1). (3) 

The superscripts (1), (2) refer to two distinct sets 
of Pauli matrices and the notation X denotes direct 

product. For example to get r 2, first write down a 
matrix <T~, but consider its elements as 2 X 2 null 
and unit matrices, respectively. Next multiply each 
of these four matrices by the 2 X 2 matrix <T~2), 

so that 
o 0 0 -i 

r 2 = o 0 i 0 

o -i 0 0 

i 0 0 0 

The direct multiplication process can be repeated. 
For example to obtain r 2 X <T!S), consider the ele
ments 0 and ±i of r 2 as 2 X 2 null matrices and 
±i times 2 X 2 unit matrices, respectively, and 
multiply each of these matrices with <T •• For n = 2v 
or 2" + 1 we shall need direct products of v matrices 
of the kinds <T!'), q~'), <T~i), l w , i = 1, '.' , v, 
where 1 (i) is the ith 2 X 2 unit matrix. 

This construction procedure for Dirac matrices 
makes it considerably simpler to derive and under
stand some results due to Cartan.2 In his book on 
spinors a more geometrical reasoning is used which, I 
believe, makes the derivations for general n unduly 
cumbersome. There are several interesting theorems 
on bilinear spinor covariants which depend in a non
trivial way on n modulo 8. These can all be obtained 
by asking, in the language of the physicists, the 
following question. What is the n-dimensional 
generalization of the familiar charge conjugation 
matrix O? 

Briefly, C is a unitary, skew symmetric matrix 
and is invariant under the full Lorentz group.s 
In any given representation, 0 considered as a 
unitary transformation sends any of the n Dirac 

* Work supported, in part, by the U. S. Atomic Energy I E: Cart~n, LefOnB sur la theorie .des 8pineur8 (Hermann 
Commission. and Cie, PartS, 1938), 2 vole. Actualites Scientifiques, Nos. t Permanent address: The Institute for Advanced Study, 643, 701. 
Princeton, New Jersey. a For a discussion of the properties of C, see e. g., A. Pais 

1 R. Brauer and H. Weyl, Am. J. Math. 57, 447 (1935). and R. Jost, Phys. Rev. 87, 871 (1952). 
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matrices into its transposed. In the next section 
we construct a unitary and invariant matrix C for 
any dimension. The interesting thing is the way the 
symmetry of C depends on the dimension number, 
see Eqs. (9) and (25) below. In Sec. III we give 
some illustrations for two-, three-, and seven-di
mensional rotation groups. 

r 1 = A., 

r
2m 

= A.-
m 

X U~'-"+l) X 1 (,- .. +2) X 

r 2 .. + 1 = Ao-m X u;'-"+1) X 1 (.- ... +2) X 

r 2 • =u~l)Xl(2)"'Xl(r), 

ll. THE C MATRIX 

(A) Even Dimensions, E 2
• 

Lemma. There exists a representation in which 
all r a are Hermitian, half of them are symmetric 
(real), the other half antisymmetric (imaginary). 

One way of achieving this is as follows: 

X 1(0) '} 

X 1 ('), 
m = 1, .. , ,11 - 1 (4) 

where Eq. (10) so that 

(5) C' = S'CS. (12) 

For n = 2 this reduces to Eq. (3). It is easy to see It follows that C' again satisfies Eqs. (8) and (9). 
that Eq. (1) is satisfied. As the u's are Hermitian, 
so are the r's. Furthermore (b) Invariance of C under Rotations 

(6) An infinitesimal rotation on the 2'-component 
spinor w is given by 

where t denotes transposition. Equation (6) is true 
because the transposed of a direct product equals 
the direct product of the transposed factors. 

We now define the "charge conjugation matrix" 
Cby 

(13) 

Under this specific S-transformation C' = C; from 
Eqs. (10) and (12). Note that the reality properties of 
fp" do not enter the discussion here, so that these 
results are independent of the signature of the 

(7) metric. 

(c) 1nvariance of 0 under Reflections C has three main properties. First, 

ctc = 1. (8) At this point it is helpful to introduce the generali-

Secondly, from Eqs. (1) and (6) 

C' = (_I)(0/2)(0-OC = C, II = 0, 1 mod 4, 
(9) 

- C, II = 2, 3 mod 4. 

Finally, it follows from Eqs. (1) and (7) that cr a = 
(-l)>+'raO where E = 0(1) for a even (odd). 
Hence using Eq. (6) 

cra = (-I)J+lr~C. (to) 

zation of the customary 1'6 matrix, namely, 
20 

r 2J+l = (-1,)' II r a' (14) 
a-I 

In the special representation of Eqs. (4) and (5) 
we have 

r - (1) - [1'_1 0 1 2,+1 - U. - , 

o -1'_1 
(15) 

Thus for II = 2, Eqs. (8), (9), and (10) show that 0 where 1'-1 is the 2,-1-dimensional unit matrix. Thus 
has the familiar properties.3 

Next consider the behavior of C under the follow-
ing kinds of transformations. 

(a) Change of r Representation 

r~ = s-Ir,.s. (11) 

The corresponding Of is defined so as to preserve 

(16) 

while from Eqs. (6), (10), and (14) we obtain 

(17) 

Consider the coordinate reflection in E 2
• : X ~ = - X a, 

X~ = X{J, fJ ¢ a, a = 1 or 2 ... or 211. There is an 
ambiguity in the definition of the behavior of w 
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under reflections. We may put 

'It' = S"''It, (18) 

With this choice, C is also invariant under reflections, 
as follows from Eqs. (12) and (17). Thus Eqs. (8), 
(9), and (10) are invariant and independent of the 

One has 

ctc = 1, 

C' = (_1)('/2)(,+1)C, 

Cf' '" = (-lrf'~C. 

(24) 

(25) 

(26) 

choice of representation. 
Bilinear covariants. We have 

quantity T, defined by 

The transformation Eq. (12) holds true here too. 
at once that the So does the invariance of C under rotations. We 

need not consider reflections. We have 

T == 'P"'C'It, (19) 

is a scalar with respect to the full n-dimensional 
rotation group (i.e., including reflections). For 
T' = 'It'S'CS'It = T. However, it is evident that 
T == 0 if4 C' = -c. Therefore 

T ~ 0 if v = 0, 1 mod 4, (20) 

that is, in 2, 8, ... dimensions. The exten
sion to tensors of higher rank is trivial. Thus 
'It'C(~ ± f'1" ... f' ,,~)'It is a tensorS ofrank p which is 
~Ofor v(v - 1) + 2p(1I + 1) + pep - 1) = Omod4. 
In particular, for p = 211 we get a nonvanishing 
"pseudoscalar" for 11(11 + 1) = 0 mod 4. 

Bilinear covariants excluding reflections. It follows 
from Eq. (15) that in the special representation Eq. 
(14) the quantities 

'It. = [(1 ± f'2.+1)/2]'It (21) 

have, in general, 2.-1 nonvanishing components. 
These are the so-called semispinors of first and 
second kind. Define 

T. = 'It~C'It •. (22) 

These are scalars with respect to the restricted group 
where reflections are excluded. From Eqs. (16) and 
(17) T+ ~ 0 for v = 0 mod 4. Likewise T~ = 
'It ~diT. ~ 0 for 11 = 1 mod 4. The construction of 
higher rank tensors in terms of semi-spinors is 
obvious. 

(B) Odd Dimensions, F)Hl 

According to Eq. (15), r~'+1 = 1, and furthermore 
f'2Hl anticommutes with all r cr, a = 1, ... , 211. 

For 211 + 1 dimensions a representation of the Dirac 
matrices is therefore given by Eqs. (4) and (15). 
Define 

>+1 

o = II f',..-I· (23) 
",·1 

t The components of 'iJr are supposed to commute. 
i l: + denotes the alternating sum over permutations of 

(1, ... , p). 

T = 'It'CiT ~ 0, II = 0,3 mod 4, (27) 

and of course T is a scalar. Tensors of higher rank 
are discussed as under (A). 

Expressions like Eqs. (19), (22), and (27) can of 
course be generalized to <I>'CiT, where <1>, 'l1 are two 
distinct spinors. For <I> ;c iT the corresponding 
scalars and other covariants clearly are in general 
nonzero for any dimension. 

m. APPLICATIONS 

(1) For orientation, consider the familiar instance 
n = 3. We are in case (B), 11 = 1 and according to 
the recipe of Eq. (4), f'1 = (Tz, f'2 = (T., ra = (T., 
so from Eq. (23), C = -i(T". Consider two spinors 
<1>' = [a(1), ~(1)1 and 'l1' = [a (2) , tJ(2)]. a and ~ 
denote the eigenstates for spin up and down, re
spectively. The "arguments" 1 and 2 simply denote 
that we deal with two distinct spinors. The scalar 
<I>'C'l1 = -a(I)~(2) + a(2).B(I). This is of course 
the two-particle singlet state. Now put" 1 = 2," 
that is, take the scalar <1>'0<1>. This vanishes identi
cally. 

Thus Eqs. (20) and (27) say that only for di
mensions n = 1, 2, 7, 8 mod 8 is it possible to form 
a nonvanishing singlet state bilinear in one single 
spinor. 

(2) As the simplest example for a nonvanishing 
invariant take n = 2. We have case (A), II = 1. 
Thus f'1 = (T,., f'z = (Til' C = (T,.. Therefore <I>'C'l1 = 
a(I)~(2) + a(2).B(I). This quantity is indeed a 
scalar for rotations in the xy plane, as it is the z 
component of the spin I-vector in 3-space. And 
<I>'C<I> indeed does not vanish. 

(3) A less trivial example of a nonzero scalar is 
provided by the seven-dimensional charge space 
formalism of baryon meson interactions. II Here the 
coupling wrl''l1<1>10 is considered with 

,T,' ( _0 _- ~+ A - ~o A + ~o ) (28) 
~ = p, n, ,!:!. , ,!:!., , V2 ' V2 ,~-

6 First given by J. Tiomno, Nuovo cimento 6, 69 (1957). 
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_ (K- + K+ K- - K+ KO + KO 
<PI' - V2' iV2 V2 

rp = u;1) X U~2) X 1 (3), U;l) X U~2) X 1(3), 

_ 0-;1) X 0-!2) X 1 (3), U;1) X 1 (2) X 1 (3), 

U;1) X 1 (2) X U;3) , U!l) X 1 (2) X U~3), 

q!1) X 1 (2) X U!3). (30) 

'It is an 8-component spinor with respect to charge 
space. Each of its components is a 4-spinor with 
respect to Lorentz space. We shall denote by 
'itA) A = 1,2,3 or 4 the four quantities obtained by 
taking the same A th Lorentz space component of 
each charge space component. Each 'It A transforms 
as a spinor under the seven-dimensional rotation 
group. 

The r representation of Eq. (30) is not like Eqs. 
(4) and (15) but it does satisfy Eqs. (6) and (16). 
We can therefore apply the formalism of case (B) 
with v = 3. Thus C = _1(1) X U~2) X 0';8). Define 
TAB by 

TAB = 'It~C'ltB = AAAB 

- (~1~i + ~~~~ + ~.:;:~;) 
- (PA:e; - nAZ~) - (:e':;:PB - :e~nB)' (31) 

For all A, B = 1, ... , 4, TAB is a nonvanishing 
scalar with respect to the 7-group. The same is true 
for f.u == W~CWB' 

TAB is of course also a scalar with respect to any 
subgroup of the 7-group, but then it breaks up in 
separate parts invariant with respect to that sub
group. An obvious example is the isotopic spin with 
respect to which TAB clearly consists of four addi
tive scalar parts. A less trivial case is the exceptional 
group G2 with respect to which AA AB and 
TAB - AAAB are separate scalars. For example the 
finite angle rotations of G2 explicitly given by 
Behrends and Sirlin7 are seen to leave AAAB and 
TAB - AA AB separately invariant. 

There begins to emerge a certain three-way 
equivalence for the baryon, the antibaryon (each in 
a given spin state) and the meson. For each there 
~xists a bilinear invariant, namely, TAA , fAA and 
4>; = KK + KK + 1r

2
, respectively. Let us intro

duce an additional meson state 0- with zero spin 
and hypercharge which forms an octet with 1r and 

7 R. Behrends and A. Sirlin, Phys. Rev. 121, 324 (1961), 
Table 1. 

K. Now all three quantities are 8-component. The 
structures now before us are just the ones which 
playa role in the principle of triality,8 unique for 
dimension eight. Briefly stated, triality is a certain 
substitutional invariance (involving the alternating 
group on three things) between vectors, semi
spinors of the first kind and semispinors of the 
second kind in an 8-space which leaves invariant a 
trilinear form. In our case this form is ~ r I' 'It¢p + 
~'ltu. Note that such a substitutional invariance is 
conceivable only in an 8-space, because only for 
that dimension do vectors and semispinors of either 
kind all have the same number of components. 
Triality invariance is very closely connected with 
the octonion formulation of interactions given else
where.9 If applicable, the principle of triality would 
state that the baryon, the antibaryon and the meson 
have identical properties of higher symmetry and 
that the interaction should be such that these 
three objects are interchangeable (with respect 
to their intrinsic symmetries) as is the case for 
their trilinear invariant. In all this we have not 
insisted on the spatial transformation properties 
such as the spin zero character of the meson. 

In all the foregoing, the signature of the metric 
played no role. This only enters when we have to 
consider simultaneously a spinor and its adjoint. 
Let the directions h, k, ... be timelike. Then the 
adjoint of '1' is ~ = 'lttrhrk .... 

It is well known that familiar charge conjugation 
can only be formulated consistently in a quantized 
theory. Likewise the desired change of sign of the 
4-current is also closely related to the 3 + 1 sig
nature of the metric. 

Consider as a last example a 7-space with sig
nature 6 + 1. Let "4" be the timelike direction. 
Form the current 'frrp'lt, 'fr = 'ltt r 4. Perform now a 
charge conjugation 'It' = C-liFl. Taking the adjoint 
of this gives W' = - '1"G. [We are in case (B) with 
v = 3.] Note how this minus sign is closely con
nected with the oddness of the number of timelike 
directions. Now let 'Itt and 'It anticommute.Then 
(~r,,'It)' = - (iFrp'lt). 

This property is isomorphic to G conjugation. 
This is seen as follows. A representation of the r" 
is provided by rp = 1'1') P, = 1-4, r 5 .6 . 7 = 1'6T1.2.a. 

Here the 1'", are the usual four Dirac matrices and 
T, is the isotopic spin vector. Take 1'1 and 1'3 real, 
1'2 and 1'4 imaginary. and apply the general formulas. 
This gives G7 = 1'11'3' -iT2 = G4• -iTz. G. is the 
over-all charge conjugation matrix, G4 is the corre-

a Reference 2, Vol. 2, p. 53. 
e A. Pais, Phys. Rev. I..etters 7, 291 (196]). 
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sponding matrix for Lorentz space. Thus C7 is the 
G-conjugation operator. The 1-4 components of 
wrpw are the baryon current and the 5-7 com
ponents are the 1r-meson source. Together, these 
form a vector in a 7-space. 

The enlarged current structure is just due to the 
fact that 1r is pseudoscalar.1o If we use the r's of 

19 However, a scalar '/I' with scalar coupling would also be 
odd under G. 

Eq. (30) and denote them now as r~7) we get again 
such a structure, namely, rG = ('YIl' 'Y5r~7»). The 
rG again satisfy Eq. (1) and wrGw is again a vector, 
just because 1r and K are pseudoscalar. This current 
consists of baryon current, 1r and K sources. There 
exists a corresponding conjugation, enlarging G 
conjugation (with K ~ - K) just as G conjugation 
enlarges charge conjugation. It would be interesting 
if, along with the enlarged conjugation one could 
also enlarge the gauge principle. 
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The integral representation proposed previously in the two-particle scattering is extended to the 
case of one-particle-production amplitudes. Five integral representations are found whose main parts 
consist of only six terms. Their support properties are investigated for the equal-mass case in every 
order of perturbation theory. It is shown that lowest-order graphs are by no means the representatives 
of analyticity in perturbation theory even in the equal-mass case. 

1. INTRODUCTION 

IN previous worksl,2 we have proposed an integral 
representation for the two-particle scattering 

amplitude, which is 

/
'''' da 11 dz Pliex, z) 
) 0 ex - Z8 - (1 - z)t - iE 

+ f'" df311 dz P2S(f3, z) 
o 0 {3 - zt - (1 - z)u - iE 

+ f'" d (dz PSl('Y, z) 
o 'Y Jo 'Y - zu - (1 - z)s - iE 

+ f'" ds' , P1(S') . + 1'" dt' , P2(t') . 
o s -S-'/,E 0 t -t-'/,E 

+ f'" du' , Pa(u') . + const 
o u -U-'/,E 

(1.1) 

n unsubtracted form, where s, t, u are the invariant 
quares of energy and momentum transfers. This 

representation has the following properties: 
(a) It can be proved in every order of perturbation 
1 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 26, 337 

(1961). 
2 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 26, 927 

(1961). 

theory for many practical cases. It remains valid 
even if there appear some scattering-type anomalous 
thresholds. 

(b) If the Mandelstam representations (its valid
ity is not clear yet) is correct, (1.1) can be derived 
from it. 

(c) There are some graphs in which ex :2: 0, 
{3 :2: 0, and 'Y :2: 0 are not assured. But if a single 
dispersion relation holds, (1.1) always holds for 
every graph. 

(d) Under appropriate support properties, single 
dispersion relations for s, t, and u (with a limited 
momentum transfer) and the partial-wave dispersion 
relation are derived from (1.1). 

(e) The Mandelstam bounding curves' are derived 
from the support properties of (1.1) for some prac
tical cases. 

(f) Contrary to the Mandelstam representation, 
this representation can be generalized to production 
amplitudes. 

The present paper concerns the last item, namely, 
we investigate concrete forms of integral representa-

IS. Mandelstam, Phys. Rev. 112, 1344 (1958). 
4 S. Mandelstam, Phys. Rev. 115, 1752 (1959). 
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sponding matrix for Lorentz space. Thus C7 is the 
G-conjugation operator. The 1-4 components of 
wrpw are the baryon current and the 5-7 com
ponents are the 1r-meson source. Together, these 
form a vector in a 7-space. 

The enlarged current structure is just due to the 
fact that 1r is pseudoscalar.1o If we use the r's of 

19 However, a scalar '/I' with scalar coupling would also be 
odd under G. 

Eq. (30) and denote them now as r~7) we get again 
such a structure, namely, rG = ('YIl' 'Y5r~7»). The 
rG again satisfy Eq. (1) and wrGw is again a vector, 
just because 1r and K are pseudoscalar. This current 
consists of baryon current, 1r and K sources. There 
exists a corresponding conjugation, enlarging G 
conjugation (with K ~ - K) just as G conjugation 
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consist of only six terms. Their support properties are investigated for the equal-mass case in every 
order of perturbation theory. It is shown that lowest-order graphs are by no means the representatives 
of analyticity in perturbation theory even in the equal-mass case. 

1. INTRODUCTION 
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+ f'" ds' , P1(S') . + 1'" dt' , P2(t') . 
o s -S-'/,E 0 t -t-'/,E 

+ f'" du' , Pa(u') . + const 
o u -U-'/,E 

(1.1) 

n unsubtracted form, where s, t, u are the invariant 
quares of energy and momentum transfers. This 

representation has the following properties: 
(a) It can be proved in every order of perturbation 
1 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 26, 337 

(1961). 
2 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 26, 927 

(1961). 

theory for many practical cases. It remains valid 
even if there appear some scattering-type anomalous 
thresholds. 

(b) If the Mandelstam representations (its valid
ity is not clear yet) is correct, (1.1) can be derived 
from it. 

(c) There are some graphs in which ex :2: 0, 
{3 :2: 0, and 'Y :2: 0 are not assured. But if a single 
dispersion relation holds, (1.1) always holds for 
every graph. 

(d) Under appropriate support properties, single 
dispersion relations for s, t, and u (with a limited 
momentum transfer) and the partial-wave dispersion 
relation are derived from (1.1). 

(e) The Mandelstam bounding curves' are derived 
from the support properties of (1.1) for some prac
tical cases. 

(f) Contrary to the Mandelstam representation, 
this representation can be generalized to production 
amplitudes. 

The present paper concerns the last item, namely, 
we investigate concrete forms of integral representa-

IS. Mandelstam, Phys. Rev. 112, 1344 (1958). 
4 S. Mandelstam, Phys. Rev. 115, 1752 (1959). 
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tions for the production amplitude having five ex
ternal lines. We denote the external lines by A, B, 
0, D, E, and the corresponding external momenta 
by k[ (I = A, B, 0, D, E). Then 15 invariant squares 
are defined by 

(I = A,B, C, D,E), 
(1.2) 

(I 'F J), 

where k' = k~ - k2
•
6 The first five squares SI are 

fixed on mass shells. The remaining ten squares 
Su are of course not independent. Five mutually 
independent identities hold between them because 
of conservation law, 

sentation contains only six terms. In Sec. IV we shall 
investigate support properties of (1.4) in the equal
mass case, and show that the weight function 
pea, z,) vanishes unless a is larger than some positive 
value. Section V is devoted to the consideration on 
additional terms which correspond to the single 
dispersion terms in (1.1). Some discussions are made 
on lowest-order graphs in the final section. 

Throughout this paper the subtraction problem 
is not considered. 

U. COMBINATIONS OF INDEPENDENT SQUARES 

From (1.2) and (1.3) we immediately obtain five 
identities 

(1.3) B 

G1 == L SIJ - S[ - L SJ = 0 

We should therefore select five squares among ten· 
The number of such combinations is IOC6 = 252. 
Five squares are, however, not always linearly inde
pendent. We shall show in next section that the 
number of the combinations of independent squares 
is 162. Therefore the main part of our integral repre
sentation would consist of 162 terms. But, fortu
nately, we may not take such too many terms, 
because their supports mutually overlap. In Sec. III 
we shall select appropriate sets R of combinations 
such that a production amplitude corresponding to 
any graph can be represented unambiguously in 
terms of the sum of integrals, 

over the combinations {81' 82, Sa, 8" 86} belonging 
to R (s, stands for anyone of 8u). We shall find 
that such a set consists of only 6 combinations, 
that is to say, the main part of our integral repre-

(i) 0,[ + aJ, ar + aK, a1 + aL, 

(ii) 0,1 + aJ, 0,1 + aK, 0,1 + aL, 

(iii) 0,1 + aJ, 0,1 + aK, 0,[ + aL, 

(iv) 0,1 + aJ, 0,1 + aK, 0,1 + aL, 

(v) a1 + aJ, a1 + aK, a1 + aL, 

(vi) 0,1 + aJ, 0,1 + aK, aJ + aL, 

Here the number of the combinations belonging to 
each type is written at the right end. 

6 Note the metric is different from that used in previous 
articles. 

J~[ J-A 

(I = A, B, 0, D, E), (2.1) 

which are mutually independent. All other identities 
are obtained as linear combinations of (2.1). For 
instance, 

(Gr + GJ + GK - GL - GM)/2 = 8IJ + 8rK 

+ 8J1C - SLM - 8[ - 8J - SK = 0, (2.2) 

where (I, J, K, L, M) is a permutation of (A, 
B, C, D, E). 

Theorem. The identities which involve five or less 
squares 8IJ are (2.1) and (2.2) only. 

Proof. An arbitrary identity is written as 

(2.3) 

a1 being constants. In (2.3) the coefficient of BIJ 

is ar + aJ. According to the condition stated in 
the theorem, five coefficients among them must 
vanish. We classify the types of the combinations 
of the remaining five coefficients into the following 
six kinds: 

a1 + aM, aJ + aK, 30, 

aJ + aK, aJ + aL, 30, 

aJ + aK, aJ + aM, 60, 

aJ + aK, aL + aM, 60, 

aJ + aM, aK + aM, 60, 

aK + aM, aL + aM, 12. 

For type (i) the condition is 

aJ + aL = aJ + aM = aK + aL 

= a K + aM = aL + aM = 0, (2.4) 
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which has a nontrivial solution 

(2.5) 

Likewise for type (iv) we get a nontrivial solution, 

(2.6) 

(2.5) and (2.6) correspond to (2.1) and (2.2), respec
tively. For the other four types we have no non
trivial solutions, Q.E.D. 

From the above theorem we see that the com
binations of five independent squares are as follows: 

[A] 

[B] 

[C] 

{SIJ, SIK, SIL, SJK, SJL} 

{SIJ' SIK, SIL, SJK, SJM} 

{SIJ, SIK, SIL, SJM, SKM} 

30, 

60, 

60, 

[D] {SIJ, SIK, SJL, SKM, SLM} 12. 

Here types [A], [B], [e], [D], respectively, correspond 
to the nonexistence of the solution in types (li), 
(iii), (v), (vi). Thus we see that the total number 
of the combinations of five independent squares is 16S. 

m. INTEGRAL REPRESENTATION 

When all particles are scalar, the production 
amplitude corresponding to a Feynman graph is 
proportional tol,6 

11 11 15(1 - Ef-! Xi) 
o dx! ... 0 dXN U2(V _ iE)N-2n , (3.1) 

with 
N E 

V = E xim~ - E tISI - E tIJSIJ, (3.2) 
.-1 I-A I .. J 

where m, is an internal mass, and U, tI, and tu 
are nonnegative definite functions of Feynman 
parameters Xi' 

When we take five independent squares shown 
in the end of the last section, the other five squares 
are expressed by their linear combinations. Then V 
is expressed as a linear function of five squares S1J. 

We are interested in the coefficients 5~J in this 
expression. 

[A] {su, SIK, SIL, SJK, SJL}: 

SIM = -Su - SIK - SIL + SI + so, 

SJM = -Su - SJK - SJL + SJ + so, 

SKL = -Su - SIK - SIL - SJK - SJL - SM + 2so, 

SKM = Su + SIL + SJ L - SI - SJ - 8L, 

SLM = Su + SIK + SJK - SI - SJ - SK (3.3) 

a Y. Nambu, Nuovo cimento 6,1064 (1957); K. Symanzik, 
Progr, Theoret. Phys. (Kyoto) 20, 690 (1958), 

with So == E:-A SI' Hence the coefficients are as 
follows: 

- tJM - tKL, 

5IK + 5LM - tIM - tKL, 

tiL 5IL + tKM - tIM - tKL, 

tjK = 5JK + tLM - tJM - tKL, 

tjL = tJL + tKM - tJM - tKL' 

[B] {SIJ' SIK, BIL, SJK, sJMI: 

t~J 5u + tLM - tIM - tJL, 

tiK !:IK + !:LM - tIM - tKL, 

tiL tIL + tKM - tIM - tKL, 

tjx tJK + 5LM - tJL - tKM, 

tjM = tJM + tKL - tJL - tKM' 

[C] {su, SIK, SIL, SJM, SKM}: 

t~K tlx + tLM - tIM - tKL, 

tiL = tIL + tJK + tLM - tIM 

tjM = tJM + tXL - tJK tLM, 

5$CM = tKM + tJL - tJK tLM, 

[D] {SIJ, 8IK, 8JL, 8XM, 8LM} : 

tiJ tIJ + tKL - tIL - tJK, 

UK = rIX +rJM-rIM - rJX, 

tjL rJL + tIM -tIL-tJM, 

ricM = rKM + rIL - tIM - !:XL, 

5tM = tLM + tJX - tJM - tKL' 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Now in order to rewrite (3.1) as the form of (1.4), 
we must require for these five coefficients to be non
negative. This requirement imposes some inequali
ties upon tu. For example, for a combination 
{su, 8IK, SIL, 8JK, SJL} the amplitude (3.1) can be 
expressed as the integral (1.4) only when 

rIJ + rXM + tLM :2: tKL + tIM + tJM, 

tIK + tLM 

tIL + tKM 

tJK + tLM 

t JL + tKM 

:2: tKL + tIM, 

:2: tKL + tIM, 

:2: tKL + tJM, 

~ tKL + tJM' (3.8) 



                                                                                                                                    

1142 NOBORU NAKANISHI 

Therefore, in order to cover all possibilities we must 
consider a set R of combinations. We denote the 
set of all the combinations of type [J] by R[J] 
(J = A, B, C, D). Then we shall see in the Ap
pendix that R[A] covers all possibilities fivefold, and 
R[B] does fourfold; on the other hand R[C] or R[D] 
does not cover all possibilities, and the former 
covers some parts twofold. 

We have thus seen that the desired integral 
representation cannot be symmetric with respect 
to the five external lines. In order to cover all 
possibilities without overlapping (except for bound
ary points), it is necessary to treat at least one ex
ternalline asymmetrically. 

By putting 

25/':' == 25IJ - 5IM - SJM + SKM + SLM, 

(3.8) is rewritten simply as 

min [s~, sIlfc, s/i, S1fK' S1fL) ~ S:L. (3.10) 

Hence, for example, if we take the set of six com-

It may be noteworthy that an identity 

(GI + GJ + GK + GL - GM)/2 = 8IJ + SIK 

+ SIL + SJK + SJL + SKL - 2so + SM = 0, (3.14) 

which is similar to the identity of the two-particle 
scattering case, holds between the six squares ap
pearing in (3.13). 

IV. SUPPORT PROPERTIES IN THE EQUAL-MASS CASE 

It is a very important problem to find support 
properties of the weight functions pea, zJ. We 
expect that for practical cases they vanish unless 
a > 0. For simplicity we will show this only for 
the equal-mass case, which is completely symmetric 
with respect to all the external lines. 

For definiteness we consider a term (1.4) in which 
SI, S2, S3, S4, S5 are identified with SAB, SAO, SAD, 

SBO, SBD. The denominator function V is rewritten as 
N E 

V = L: x,p.2 - L: N l - S~BSAB - S~OSAO 
i-I I-A 

with 

sl == rA + 2S0D + 2SAE + SBE - SOE - SDE, 

S~ == So + 2S0D + SAE + 2SBE - SOB - SDB, 

binations 

{SAO, SAD, SBO, SBD, SOD}, 

{SAB' SAD, SBO, SBD, SOD}, 

{SAB' SAO, SBO, SBD, SOD}, 

{SAB' SAO, SAD, SBD, SOD}, 

{SAB' SAO, SAD, SBO, SOD}, 

{SAB' SAO, SAD, SBO, SBD} (3.11) 

as R, it covers all possibilities without overlapping, 
because these combinations correspond to the cases 
rE = r!B' rB = r!o, rE = r!D' rE = r!o, rE = r!D' 
rE = r~D' respectively, where 

(3.12) 

In the above we may take anyone of A, B, C, D 
instead of E as the asymmetrically treated external 
line. We have thus obtained five integral representations 
which consist of only six terms: 

56 == So + 2S0D + 
51> == SD + 2S0D + 
sfI == 5B + 50D + 
S~B == SAB - 50D -

SAB + 5BE - SDB, 

SAE + SBE - SOB, 

SAB + SBE, 

5AB - 5BE + rOB 

(3.13) 

+ SDlf ~ 0, 

S~C == SAO - SCD - rAE + SDB ~ 0, 

S~D == SAD - SOD - SAB + SOE ~ 0, 

S~O == SBO - SOD - rBB + SDB ~ 0, 

S~D == SBD - SOD - ru + SOE ~ 0. 

The integration variables are defined by 

z, = Si/~' 

with 

a = (± x,p.2 - t sf l)/~, 
i-I I-A 

(i = AB, AC, AD, BC, BD) 

(4.2) 

(4.3) 

(4.4) 

Now, in order to get a lower bound of a we make 
use of the result obtained in a previous work.7 

Consider an arbitrary graph of the two-particle 

7 N. Nakanishi, Suppl. Progr. Theoret. Phys. (Kyoto) No. 
18, 1 (1961). 



                                                                                                                                    

PRODUCTION AMPLITUDES IN PERTURBATION THEORY 1143 

scattering which contains no one-particle inter
mediate states. Let kl and k2 be such momenta that 

k~ = k~ = p,\ (4.5) 

Then it was proved that 

V:::: 0 (4.6) 

when the four external momenta are given by 
kl + k2' kl - k2' -kl + k2' -kl - k2. 

In the present case, if one of the five external 
momenta is put equal to zero, we can make use of 
the above result. For example, if we put 

kA = kl + k2' kB = -kl - k2' ke = kl - k2' 

kD = -kl + k2' kE = 0, 

then we have an inequality 

L X,p,2 - (rl + r; + r6 + rf,) ·2p,2 

(4.7) 

- (r~e + r~D + r~e + r~D) ·4p,2 ?:: O. (4.8) 

Likewise we get other fourteen inequalities by 
identifying kA, kB' ke, kD, kE to kl + k2' -kl - k2' 
kl - k2' - kl + k2 in various ways. Adding these 
15 inequalities, we obtain 

(4.9) 

Unlike the case of the two-particle scattering, 
E:-A f~ is not nonnegative definite. So we can 
deduce only 

a ?:: !p,2 (4.10) 

'~ 
J K M 

(a) (b) 

A 

B E 

M 
(e) . 

FIG. 1. Graphs corresponding to additional terms of the 
integral representation. 

A. Three-Variable Terms 

In Fig. 1 (a) there are no intermediate states cor
responding to IL, 1M, JL, JM, KL, KM. There
fore, 

rIL = rIM = rJL = rJM = rKL = rKM = O. (5.1) 

So, using the identity (2.2) we get 

V = E x,m~ - (rI - rLM)8I 

- (rJ - rLM)SJ - (rK - rLM)SK 

- rLSL - rM8M - (rIJ + rLM)8IJ 

- (rIK + rLM)SIK - (r JK + fLM)8JK' (5.2) 

from (4.9). Therefore, the contributions from Fig. 1 (a) are 
If we add the 12 inequalities which correspond represented as a sum of ten integrals 

to k E ;e 0 among the above 15 ones, we have 

(4.11) 

instead of (4.9). Since fl :::: 0 [see (4.2)], (4.11) 
leads to 

(4.12) 

that is a little better than (4.10). 

V. ADDITIONAL TERMS 

In (1.1) the three single dispersion terms are the 
contributions from the graphs which consist of two 
vertex parts. These terms can be included in the 
main part if the weight functions contain a term 
proportional to 8(z). But it is usually convenient 
to write them separately as in (1.1). 

In case of the production amplitude such ad
ditional terms appear from the graphs shown in 
Fig. 1. 

(5.3) 

If no one-particle line is present, in the equal
mass case we get 

(5.4) 

by the method stated in the last section (add the 
9 inequalities which correspond to kL ;e 0 and 
kM ¢ 0). The pole terms are I/(l - SLM - if) 
multiplied by the three main terms of (1.1) in 
which s, t, u are replaced by SIJ, sIK, SJK' Their 
support properties are given in previous works.1

•
2 

B. Two-Variable Terms 

In Fig. l(b) we have 

(5.5) 
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o 

E 
c FIG. 2. Lowest

order graph of the 
productIon am
plitude. 

in addition to (5.1). Hence the integral representation 
is a sum of 15 integrals 

i: da f dz a _ Z8IJ -!P~~' ~ Z)SLM _ if . (5.6) 

For nonpole contributions, we obtain 

> l' 2 a _ -rP, (5.7) 

from (4.9) in the equal-mass case. If one-particle 
lines are present, we have 30 single-pole terms 

1 J.'" da !p' (a) 
p,2 _ SIJ - if .p' a - SLM - if ' 

(5.8) 

C. One-Variable Terms 

For the graphs shown in Fig. l(c) we have 10 
single dispersion terms 

2 1 . + 1'" da I/I(a). 
p, - SIJ - 'I.E 4,.' a - 8IJ - ~f 

(S.lO) 

in the equal-mass case. 

D. Constant Term 

A constant term can appear from the graphs 
shown in Fig. led). If renormalizable interactions 
only are taken, this term will not appear. 

VI. DISCUSSION 

We have obtained integral representations for 
the production amplitude whose main parts consist 
of only six terms. As the simplest example we will 
consider a nontrivial lowest-order graph shown in 
Fig. 2. 

The denominator function for this graph is 
a 

V = L: xim~ - X1X2SA - X2XaSB - XaX48c 
i-I 

(6.1) 
and 15 double-pole terms 

const 
If SAB, 8BC, 8CD, 8DB, 8A B are adopted as inde

(5.9) pendent squares, the contribution from this graph 
will be represented by (1.4) with 

Even in the equal-mass case, a ~ (2p,)2 does not 
hold, or more precisely, 

min a = (2 + Va)p,2. (6.3) 

Now, the combination {SAB' SBO, 8CD, 8DB, 8AB} 

belongs to R[D] of Sec. III. We have stated there 
that the 12 combinations of R[D] cannot cover 
all possibilities. This means that any superposition 
of these lowest-order terms is not sufficient to repre
sent general terms [for example, the term corre
sponding to Fig. 3(d)].8 

On the other hand, our integral representations 
can naturally describe the term corresponding to 
Fig. 2. Indeed, (6.1) is rewritten as 

5 

V = L x;m~ - (X1X2 - X.X1)8A 
i-I 

8 Added note: This reasoning may be not completely 
rigorous because th~ uniquene~s of the weight functions in our 
integral representatlOn (3.13) IS not proved yet. 

(6.2) 

- (X2Xa - X.Xl - XsX2)8B 

- (xax, - x.X. - XaX2)80 

- (x,xs - XsX2)8D - XsX18B 

- (XjXa + X,X1)8AB - X,X.8AO 

- (X2X, + X4Xl + XsX2)SBC 

- XsX28BD - (XaXs + XsX2)8cD, (6.4) 

in which the coefficients of SAB, 8AO, 8BO, SBD, 8CD 

are nonnegative. 
Some authors9 conjectured that lowest-order 

graphs (i.e., one-loop graphs) would be the repre
sentatives of analyticity of general terms. It is 
evident from the above consideration, however, that 
thi8 conjecture i8 not true even in. the equal-mas8 case. 

9 R. J. Eden, Phys. Rev. 119, 1763 (1960). L. F. Cook, Jr. 
and J. Tarski, J. Math. Phys. 3, 1 (1961). 
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A 
(b) 

(d) 

FIG. 3. Simplest 
symmetric graphs. 

representation for the one-body propagator. For 
the vertex function it will be consistent with the 
Kallen-Tollll integral representation because the fo 
term is nonperturbational. No counterexamples 
against it are found for the scattering or production 
amplitudes. 
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APPENDIX 

Some special counterexamples 
two-particle scattering.I

•
IO 

We will analyze the conditions r' ~ 0 in (3.4)
(3.7). For this purpose it is convenient to introduce 

exist also for the five quantities 

8M == min (rlJ + tKL, tlK + tJL, tIL + tJK), (AI) 

where (I, J, K, L, M) is a permutation of (A, 
B, C, D, E) as in the text. Any possibility must 
exclusively belong to only one of the 243( = 35

) 

classes which are classified into the following seven 
types: 

So we conjecture that the representative graphs 
will be those shown in Fig. 3 rather than lowest
order ones, namely, any term in perturbation theory 
will be represented by an internal-mass superposition 
of the terms corresponding to Fig. 3. This conjecture 
gives the Umezawa-Kamefuchi-Kallen-Lehmann 

(a) (JM = tIJ + tKL, (JL = rlJ + rKM, 

(JJ = tIM + tEL, (JI = tJM + tKL; 

(b) 8M = tIJ + tKL, (JL = tIJ + rKM, 

8J = tIM + tEL, 81 = tJL + tKM; 

(c) 8M = tIJ + tKL, 8L = tIJ + rKM, 

8J = tIL + tKM, 81 = tJM + rKL; 

(d) (JM = tIJ + tKL, (JL = tIJ + tKM, 

(JJ = tIL + tXM, (JI = tJK + tLM; 

(e) (JM = tIJ + tEL, 8L = tIJ + tKM, 

OJ = tIM + tKL, (JI = tJK + tLM; 

{f) 8M = tIJ + tKL, (JL = tIJ + tKM' 

8J = rIK + tLM, 81 = rJK + tLMj 

(g) 8M = tIJ + tKL, (h = rIK + tJM, 

(JJ = tIL + rKM, (JI = rJK + rLMj 

(JK = tIl + tLM' 

15. 

(JK = tIl + rLM, 

60. 

8K = tIL + rJM, 

12. 

(Jx = tIL + tJM, 

60. 

(JK = tIL + tJM, 

60. 

8x = tIL + tJM, 

30. 

8K = tIM + tJL, 

6. 

Here the number of the classes belonging to each type is written at the right end. 
In the above, types (d), (e), (f), (g) actually do not occur. For example, consider 

10 R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor, J. Math. Phys. 2, 656 (1961). 
11 G. Kiill~n and J. Toll, Helv. Phys. Acta 33, 753 (1960). 

type (d). On 
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account of (Al) we have 

SU + SKL ::; SIL + S JK, 

SIL + SJM S su + SLM, 

SJK + SLM ::; SJM + rEL, 

(A2) 

S' ~ 0 in (3.4)-(3.7) are rewritten as follows: 

[AJ !:IM + SEL ::; min [!:IK + SLM, tIL + tEM], 

tJM + SEL ::; min [tJE + SLM, SJL + tEM], 

rEL + tIM + SJM ::; su + SKM + SLM' 
(A6) 

which lead to inconsistency except for boundary [B] 
points. Types (e), (f), (g) are likewise self-incon
sistent. Therefore, we have only to consider types 

SIM + t JL ::; min [su + SLM, SIL + S JM], 

!:IM + SEL ::; min [tIL + !:KM, rJK + SLM], 

tJL + rKM ::; min [tJK + rLM, tJM + SEL]' ~), (b), (c), which are indeed nontrivial. For the 
sake of later use, we write examples of these types 
in the following: 

(a) rAB + SOD::; min (rAO + SBD, rAD + rBO], 

rAB + !:OE ::; min [rAO + !:EE. !:AE + rEO], 

rAB + !:DE ::; min [!:AD + rEE, SAE + SBD], 

SAE + SOD::; min [SAO + tDE, tAD + tOE], 

SU + SOD::; min [SBO + SDB, tBD + tOB]; 

[0] 

(A7) 

SIM + tJK ::; min [su + rKM, SIE + SJM], 

SIM + SJL ::; min [su + SLM, rIL + SJM], 

tIM + SEL ::; min [tIK + SLM, SIL + SEM], 

tJK + SLM ::; min [SJM + tEL, SJL + tKM], 

SIM + rJL + SKL ::; SJK + SIL + SLM' 
(AS) 

(A3) [D] SIL + SJE ::; min [su + SKL, tIE + sn], 

tIM + S JK ::; min [SIE + t JM, tu + SEM], 

!:IL + rJM ::; min [tIM + tn, ru + rLM), 

rIM + SEL ::; min [SIL + SEM, SIE + rLM], 

SJM + SEL ::; min [rJE + !:LM, !:JL + !:EM]' 

(b) tAE + SOD::; min [tAO + SED, SAD + tEO], 

rAE + rOE::; min [rAO + ru, rAB + rEO], 

SAB + SDE ::; min [SAD + SEE, tAE + SED], 

S AE + !: OD ::; min [tAO + SDE, SAD + !: OE], 

rED + !:OB ::; min [tEO + SDB, tEB + rOD); 
(A4) 

(c) tAB + tOD ::; min [!:AO + tBD, !:AD + !:Ed, 

SAE + SOE ::; min [rAO + !:EE, !:AE + !:EO], 

tAD + tEE::; min [tAB + tDE, tAB + tED], 

SAD + tOB ::; min [tAO + tDB, tAB + tOD], 

rEB + tOD ::; min [tBO + SDB, !:ED + tOB]' 
(A5) 

On the other hand, as is easily seen, the conditions 

(A9) 

Comparing (A6)-(A9) with (A3)-(A5), we obtain 
the result that R[A], R[B], R[O], R[D] cover each 
class of types (a), (b), (c) with the following mul
tiplicities: 

R (a) (b) (c) 

R[A] 5 5 5 

R[B] 4 4 5 

R[G] 2 2 0 

R[D] 0 0 1 
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The wave function for an atom with N electrons in arbitrary configuration will be written in the form 

N N 

ir = iro + L: L: !(ij), 
i-I ;-i+l 

where ira is a Slater determinant and f(ij) is the antisymmetrized product of (N -2) one-electron 
spin-orbitals and one 2-electron function cJJ(ij/12). The correlation between the two spin-orbitals 
'Pi and 'Pi can be taken into account by introducing rl2 (the interelectronic distance) explicitly into 
the 2-electron function cJJ. The purpose of the paper is to analyze the structure of the matrix com
ponents of the Hamiltonian with respect to the wave function given above. Starting from exact, 
general formulas for the matrix components it will be shown that, all integrals which occur in the 
diagonal, as well as in the nondiagonal matrix components can be reduced to six basic integrals which 
are 2- , 3- , and 4-electron integrals, containing interelectronic distances. It will be indicated that, 
five of the six basic integrals can be calculated in closed form whereas one of them, (an exchange 
integral) can be given only in the form of an infinite series. 

1. FORMULATION OF THE PROBLEM 

T HE general theory of correlated wave functions 
was developed in two previous papers by this 

writer. I .2 The purpose of this theory is to develop 
a method for the calculation of electronic wave 
functions which may depend explicitly on the 
distances between the electrons. In A we have 
suggested a variational procedure which enables us 
to calculate all 2-electron correlations in a system 
of electrons; in I we extended the theory to include 
3-electron, ... N-electron correlations. 

In the present paper we restrict ourselves to the 
discussion of the 2-electron approximation.3 The 
basic idea of this approximation is to set up the 
approximate solution for the Schrodinger equation 
in the following form4

: 

N N 

'1' = '1'0 + L: E f(i}), (1.1) 
~=1 i ... i+l 

where 'l'o is a Slater determinant and f(ij) is a 
correlated wave function of second order that is 

1 L. Szlisz, Z. Naturforsch. 15a, 909 (1960); hereafter 
referred to as A. 

I L. Szlisz, Phys. Rev. 126, 169 (1962); hereafter referred 
to as 1. A list of references related to the theory of correlated 
wave functions can be found in this paper. The most im
portant references are the following: V. Fock, M. Wesselow, 
and M. Petrashen, J. Exptl. Theoret. Phys. (U.S.S.R.) 10, 723 
(1940); M. Wesselow, M. Petrashen, and A. Kritschagina, 
ibid. 10,857 (1940); M. Wesselow and M. Petrashen, ~'bid. 10, 
1172 (1940); A. P. Jucys, ibid. 23, 357, 371 (1952); L. Szlisz, 
Z. Naturforsch. 14a, 1014 (1959); J. Chern. Phys. 35, 1072 
(1961). 

a This phrase was introduced in 1. See Secs. 2 and 5. 
'See Eqs. (5), (10), and (19) in A; Eq. (5.6) in 1. 

defined as follows5
: 

f(ij) = (N~)l/2 A {'PI(ql) .. , 'Pi-l(qi-I)'Pi+l(qi+l) 

... 'P;-I(qj-I)'Pi+l(q;+l) .. , 'PN(qN)<P(ij I q,q;)}, (1.2) 

where 'PI ... 'PN are one-electron spin-orbitals,6 
<p(ij I qlq2) is a 2-electron function,7 q. stands for 
the spatial and spin coordinates of the ith electron, 
and A is an antisymmetry operator which makes 
the function (1.2) antisymmetric with respect to 
all coordinates after <P has been antisymmetrized 
separately. For <P we put 

<p(ij I qlq2) = ['P,(ql)'P;(q2) - 'P;(q2)'P;(ql)] 

X L: c(ijat1-y)(r~?{ + r{r~)rl~' (1.3) 
alh 

where rl and r2 are the distances of the electrons 
from the nucleus, r12 is the distance between the 
two electrons, c(ijail'Y) is a variational parameter, 
and a, il, 'Yare positive integers or zero. 

It is known that if we put (1.3) into (1.2) and 
the resulting expression into the Schrodinger energy 
integral, the variation of the energy integral with 
respect to the variational parameters c(ijail'Y) leads 
to a secular equation. The elements of the matrix 

5 The definition of a correlated wave function of nth 
order (2 ::; n ::; N) was given by Eq. (2.8) of 1. This is a 
special case of that definition for n = 2. 

e Several different notations will be used to denote the 
one-electron spin-orbitals. We note here that 'P' ... lI'i(q); 
'Pi(qk) 51 'Pi(k); 'Pi(qk) "" ('P.lqk) "" IPCilk). 

7 We shall use also the condensed notation cJJ(ijlqlq,) 
"" cJJ(ijI12). 

1147 
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of the secular equation are the matrix components 
of the Hamiltonian with respect to correlated wave 
functions. In the present article and in a forthcoming 
paper,s our purpose is to develop the mathematical 
technique for the calculation of the matrix com
ponents of the Hamiltonian, with respect to corre
lated wave functions. We consider correlated wave 
functions of the form (1.2) with 2-electron functions 
which have the form given by (1.3). In the present 
paper our goal is to derive some theorems on the 
structure of the matrix components. It will be shown 
that all matrix components can be reduced to certain 
simple basic integrals. In a subsequent communica
tion we shall establish the mathematical technique 
for the calculation of these basic integrals. The 
results of this paper as well as those of the forth
coming one are valid for atoms with an arbitrary 
number of electrons and for any configuratio~. 

2. THE DIAGONAL MATRIX COMPONENTS OF THE 
HAMILTONIAN 

Let us consider the Hamiltonian 

H = 1: -- ~i - ~ + - 1: 1:-. N(I ) INNI 
i-I 2 r. 2 i-I 1ml rii 

(2.1) 

Formulas for the diagonal matrix components of 
the various parts of H with respect to a function 
of type (1.2) were derived in A.9 According to the 
formulas (51) to (53) of A, these components are 
given by the following expressions: 

J f*(iJ{ ~ (-! ~k) }(iD dq 

= J q,*(ij 112)[ -! ~I]q,(ij 112) dql dq2 

+ ~ J Iq,(ij 112) 12 dql dq2 

X {~ J ~~(I)[-i ~1]~.(I) dq1}, 
CUll. in 

= 2! J Iq,(ij 112) 121- dql dq2 
r12 

+ J Iq,(ij 112) 12 ( -~) dql dq2 

(2.2) 

8 The investigations presented in this paper and in the 
forthcoming paper mentioned above will be reported shortly 
in the Quarterly Progress Report of the Solid-State and 
Molecular Theory Group of the Massachusetts Institute of 
Technology. Copies of that report are available upon request. 

9 See reference 1, Sec. 3. 

+ -£ f 1~.(2) 121- Iq,(ij I 13) I' dql dq2 dqa 
.. -1 T12 

(.,,~'i) 

- -£ J ~.(1)~~(2) 1- q,*(ij I 13) 
.-1 r12 

(.Jlllion 

X q,(ij I 23) dql dq2 dqa 

+ ~ J Iq,(ij 112) 12 dql dq2 

X {-£ J ~~(I)(-~)~.(I) dql 
.-1 rl 

(aJl!ii) 

+.! -£ J [1~.(I) 12 I~,(2) /2 
2 .,<-1 r12 

(It. ''''in 

- ~.(1)~~(2)~~(1)~t(2)J dql dQ2}, (2.3) 
r12 

and 

J If(ij) 12 dq = ~ J Iq,(ij 1 1, 2) 12 dql dq2' (2.4) 

In the formulas above, dqi means integration with 
respect to the spatial coordinates X,y,Zi and sum
mation with respect to the spin coordinate O"i; dq 
means the integration and summation with respect 
to all coordinates ql, q2, .. , qN' q,(ij 1 12) is a 
2-electron function, orthogonalized to all one-electron 
spin-orbitals ~I, ~2' ••• ~N except ~, and ~j, and 
it is defined in the following way: 

q,(ij 1 12) = [1 - n(ij 1 1) - n(ij 1 2) 

+ n(ij 1 l)n(ij 1 2)]tJ?(ij 112), (2.5) 

where n(ij 11) is the orthogonality projection operator I 
0 

and is defined as 

n(ij II)P(I) = t ~8(I) J ~~(2)P(2) dq2 (2.6) 
(It#ii) 

(F = arbitrary space-spin function). It was shown 
in A,11 that the orthogonalization (2.5) does not 
change the total wave function (1.2), i.e., 

f(ij) = (N~)1/2 A (~,(I) ... . .. ~N(N)~(ij 1 iJ) I 

= (N:) 1/2 A (~.(I) '" ~N(N)q,(ij I if) I , 

where q, is defined by (2.5). 

(2.7) 

10 See the discussion in I Sec. 3. In the symbol U(ijll) 
the indices (i, j) indicate that the orbitals 'Pi and 'Pj are 
excluded from the summation in the kernel of the operator 
[see (?6)] and 1 indicates that the operator operates on the 
coordmate ql. 

11 See Sec. 2 in A and Sec. 3 in 1. 
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3. ANALYSIS OF THE DIAGONAL MATRIX 
COMPONENT 

Let us consider the first, second, third, and fifth 
expressions of the matrix component (2.3). We are 
going to prove the following theorem: 

Theorem 1. Let XA (q) be either one of the one
electron spin-orbitals in the function (1.1) or the 
function which we obtain by applying the operator 
of the kinetic energy to the one-electron spin
orbital, i.e., - m A.rpA(q). 

Let us introduce the notation 

PAB(I) == PAB(ql) == X~(ql)XB(ql)' 
Assuming that .p has the form given by (1.3) all 
integrals which occur in the matrix component (2.3) 
with the exception of the fourth (exchange) integral, 
can be expressed in terms of the following four basic 
integrals: 

II = J PAB(I)pcD(2)r~r~r~2 dql dq2 (3.1) 

12 = J PAB(I)pcD(2)pEP(3)r~r~r:r:2r;2 
X dql dq2 dqa (3.2) 

13 = J PAB(1)pcD(2)pEP(3)poH(4)r~r~r:r:r:2r;2r:2 
X dql dq2 dqa dq4 (3.3) 

14 = J P AB( 1) Pc D(2) P n(3) POH( 4)r~r~r:r:r:2r;2r:l 
X dql dq2 dqa dq4' (3.4) 

Proof. Let us introduce the notation 

(3.5) 

where, in order to keep the discussion as general as 
possible, the orthogonality operator is defined as 
follows 

O(l)F(l) = ~ rp,(l) J rp~(2)F(2) dq2, (3.8) 

where we have not specified the limits of the sum
mation in the kernel of the operator [F(l) is an 
arbitrary space-spin function]. 

In the expression (3.7) we shall have first the 
integral containing the product rp::'Y* rp~~p. Evidently, 
that integral will be a special case of II' Then we 
shall have an expression where to the left of l/rl2 
we shall have rp::'Y(l, 2), to the right of l/rl2 
O(l)rp~~~(l, 2). Taking into account the definition 
of the orthogonality operator and incorporating l/r12 
into rp:t' we obtain the expression 

~ J rp~ (l)rp~ (2)r~r{r i2-1 rp, (1)rp~(3)rp i(3)rpj(2)r;r~r:2 , 

X dql dq2 dqa, (3.8) 

which is clearly a special case of 12 , We obtain the 
same type of integral from the term containing the 
product rp:!,Y*(l, 2)0(2)rp~~~(1, 2). Next we shall have 
an expression where to the left of l/rl2 we shall have 
rp::'Y*(l, 2), to the right of (l/r12) the function 
0(1)0(2)rp~~"(1, 2). Taking into account the defini
tion of the orthogonality operator we obtain 

11(1)0(2)rp~~~(I, 2) = :E rp,(1)rp,(2)A., , (3.9) .. ' 
where 

According to (1.3) the 2-electron function .p may A,t = J rp":(1)rp~(2)rpi(1)rpj(2)r1r~ri2 dql dq2 (3.10) 
be written in the following form: 

.p(ij I I, 2) = 2: c(ija{3l') 
"~'Y 

X [rp~r(l, 2) + rp~;'Y(l, 2) 

- rp;t-r(I, 2) - rp~~'Y(l, 2)]. (3.6) 

Consequently, in order to prove our theorem, it is 
enough to consider the corresponding matrix com
ponents with respect to the function (3.5) instead 
of the matrix components with respect to (3.6). 
Therefore, let us consider the following matrix 
component which corresponds to the first integral 
of (2.3): 

JI = ~ J ([I - 11*(1) - n*(2) + 0*(1)0*(2)] 

X rp:!'Y*(l, 2)}(I/rI 2){[1 - n(l) - n(2) 

which is an integral of type II' Incorporating l/r12 
into rp::'Y'(I, 2) we find that the integral containing 
the product rp::"'Cl, 2)0(I)n(2)rp~~~(1, 2) will be 
built from integrals of type II' 

Next let us consider the term where we have the 
product O*(I)rp::'Y'(l, 2)n(1)rp~i).(l, 2). Taking into 
account the definition of the orthogonality operator 
we obtain the expression 

1: J rp~(1)rp.C3)rp!(3)rp~(2)r~?{r3~(1/r12)rp,(I)<p~( 4) 
, .1 

which is a special case of 13 , Similarly, it is easy to 
show that the term which contains the product 

+ 0(1)0(2)]rp~~"(I, 2) I dql dq2' (3.7) leads to the integral 14 • Next let us consider the term 
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with 

[0*(1)¥':f"*(1, 2) J[ 0(1) 0(2)¥'~7(1, 2)], 

Taking into account (3.9) we obtain the following 
expression: 

a~. J ¥,!(1)¥'a(3)¥,~(3)1t'~(2)r~1{r31Pb(1)lt'c(2) 
X (1/rI2)A bc , (3.13) 

where Abc is given by (3.10). The above expression 
has the form of the basic integral 12• 

Let us consider now that term in (3.7) in which 
to the left of 1/Tl2 we have 0*(2)¥':!"*(1, 2), and 
to the right of 1/T12 the function 0(2)tp:~jI(1, 2). 
Obviously, that integral leads to an expression similar 
to (3.11), i.e., it leads to the integral la. Then we shall 
have an integral with the product 

[0*(2)10::"·(1, 2)J[ 0(1) 0(2)¥,~~1'(1, 2) J. 
Simple manipulations show, that this integral leads 
to an expression like (3.13) which is built from 
products of type 12 .11, Finally, we shall have in 
the expression (3.7) the integral 

J [0*(1) O*(2)tp:!"*(1 , 2)1 

X (IITI2)[O(I)O(2)10~~"(1, 2)] dql dq2' (3.14) 

Taking into account (3.9) and (3.10) it is easy to 
see that (3.14) will be built from products of 3 
integrals each having the form of the basic integral 
II' Theorem 1 is now proved with respect to the 
first expression of (2.3). 

Let us consider now the following integral which 
corresponds to the second integral of the matrix 
component (2.3): 

:12 = J {[I - 0*(1)][1 - 0*(2)]¥,::"*(1, 2)}( -zITI) 

X {[1 - 0(1)](1 - 0(2)J¥'~~"(1, 2) I dql dq2' (3.15) 

Taking into account that [1 - 0(2)J commutes with 
(l/T}) and that it is a Hermitian projection operator 
we obtain 

:12 = J {[I - 0*(I)J[1 - 0*(2)]tp:f'Y*(1,2)}(-zITI) 

X HI - O(I)]tp:;P(I, 2)} dqI dq2' (3.16) 

Let us consider first those terms in which to the 
right of zirl we have ¥'~~"(I, 2). The l/rl can be 
incorporated into ¥'~~"(l, 2) by lowering the index 
Kbyone: 

The 4 integrals which contain this term, belong to 
the same category as the integrals which we obtained 
from those terms of (3.7) in which to the right of 
llrl2 we had tp~~"(l, 2). Consequently, it is not 
necessary to discuss these integrals here. Next let 
us consider those terms of (3.16) in which to the 
right of zlrl we shall have n(1)¥'~7P(1, 2). The 
first of these will contain to the left of ZiTI the 
function 1t'::'Y*(1, 2). We can incorporate l/rl into 
tp:!"*(l, 2) by lowering the index a by one, and then 
the resulting expression will be a special case of 12 • 

Next consider the integral 

J [ O*(1)tp::'Y*(l, 2) J( -~)[ n(1)tp~~~(1, 2)] dql dq2' 

(3.18) 

According to the definition of the orthogonality 
operator we obtain the expression 

L J tp~(1)tpi3)tp!(3)tp~(2)r~t{1'3~( -zIT}) 
o.b 

X ¥'b(1)tpt(4)¥,;(4)¥'1(2)r:r~r:2 dql dq2 dq3 dq,. (3.19) 

The above integral can be divided into two parts, the 
first part being the integral with respect to qh the 
second being the integral with respect to q2, qa, q,. 
Obviously, the integral over ql will be the special 
case of II with X == 0,0 = 0, " = -1. The integral 
over (q2qaq4) is a special case of I,. 

Next we shall have a term containing the product 

[0*(2)10::'1'*(1, 2))[n(1)¥,~~P(1, 2)]. (3.20) 

The expression which we obtain may be written as 

tt J tp~(2)tp.(3)1t'~(1)¥,':(3)r~1{rt1( -ZITl)¥'b(I)¥,~(4) 
X tp;(4)tpi(2)T:r~r:2 dql dq2 dqa dq,. (3.21) 

Every integral of the above double sum may be 
expressed as the product of two integrals, one 
over (qlqa) , the other over q2 and q,. Both are 
special cases of II' The last term of (3.16) will 
be an integral, where to the left of (ziTI) we shall 
have n*(1)O*(2)IP:!'I'*(I, 2) and to the right of 
(zitI) we shall have 0(1)¥'~~"(1, 2). Taking into 
account (3.9), this term may be written in the 
following form: 

2: J tp.(1)tpb(2) Aab( -£)1t'/1)tp~(3)tp;(3)IP;(2) 
abc Tl 

X r;r~r~2 dql dq2 dqa, (3.22) 

where Aao is given by (3.10). The integral (3.22) can 
be expressed as the product of two integrals separat-
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ing the integration with respect to ql from the inte
gration with respect to q2 and qa. The integral over 
ql will "be a special case of II with A = a = 0, /C = -1; 
the integral over q2 and qa is again a special case 
of II' Theorem 1 is therefore proved also with respect 
to the second expression of (2.3). 

Let us consider now the following integral which 
corresponds to the third expression of the matrix 
component (2.3): 

J N 1 
~a = ~ CP8(2)cp~(2) r

I
2 

X {[I - O*(I)]LI - 0*(3)]cp:!Y'CI,2)} 

X ([l - O(l)J[l - 0(3)]cp~~j<(I, 3)} 

X dql dq2 dqa. 

We observe that the Hartree potential 

(3.23) 

(3.24) 

is a function of r l only. Taking into account that 
[1 - 0(3)] commutes with the Hartree potential 
(3.24) and that it is a Hermitian projection operator, 
we obtain for the integral (3.23) the following 
expression: 

33 = J {[I - 0*(1) - 0*(3) + 0*(1) 0*(3)] 

X cp::Y*Cl, 3) I [t Icp.(2) 12 / ] 
,,=1 12 

X {[I - OCI)]cp~~j«I, 3)} dql dq2 dqa. (3.25) 

Let us consider first those terms of (3.25) in 
which to the right of the Hartree potential 
L(.) Icp.(2) 12 (l/rI2) we shall have cp~~j«I, 3) without 
the operator 0(1). In the first of these four integrals 
we shall have the product 

cp::Y'(I, 3)cp~~j«I, 3) = cp~(I)cp~(3)cp~; a ,p+}.. ")'+P(I, 3) 

which, combined with the Hartree potential will 
lead to an integral of type [2' Next we shall have 
the expression 

J [O*(1)cp::Y*(I, 3)] 

X '£ cp.(2)cp~(2) 1- cp~~P(1, 3) dql dq2 dqa 
.-1 r 12 

N J 1 = ~ L cp!(I)cpG(4)cp~(4)cp~(3)r~?{r4~cp.(2)cp~(2) -_-I a. r12 

X cpi(I)cp;(3)r:r~ria dql dq2 dq3 dq4 (3.26) 

which is a special case of [ •. Similarly, it is easy to 

see that the next integral containing 0*(3)cp::Y*(I, 3) 
leads to an expression which is a special case of 
Ia. Finally, consider that term which contains 
0*(1)0*(3)cp:!Y*(I, 3). According to (3.9) this func
tion is a sum of products of two one-electron spin
orbitals multiplied by a constant which is an integral 
like II' The two one-electron functions together 
with cp~~P(I, 3) and with the Hartree potential will 
lead to an integral of the type 12 • 

Next let us consider those four integrals in the 
expression (3.25) in which to the right of the Hartree 
potential we have 0(I)cp~~PC1, 3). The first of these 
will contain to the left of the Hartree potential the 
function cp:!Y*(l, 3). A similar integral already oc
curred above when we considered the term which 
contained the product [0*(1)cp:!Y*C1, 3)lcp:~PC1, 3). 
The next term will be an integral in which we shall 
have O*(l)cp:!Y*CI, 3) as well as O(I)cp~~P(I, 3) besides 
the Hartree potential. We shall obtain an r4~ from 
the first of these expressions, an r:a from the second, 
and the Hartree potential contains r~~. Therefore 
what we obtain is a sum of products, each product 
having the form 12 ./1 , The next term will contain 
the product 

N 

[0*(3)cp:!Y*Cl, 3)] L Icp.(2W CI/rI2)[0(1)cp:~P(I, 3)]. 
a-I 

(3.27) 

Here we obtain an rl~ from the first orthogonality 
operator, an r:3 from the second, and we also have 
the r~~. Evidently, the product rl~r~~ gives rise to 
an integral like 12 and the r:3 leads to an integral 
like II' Finally the last term of ~3 contains the 
product 

N 

[0*(1) 0*(3)cp::Y'(I, 3)] L Icp.(2) 12 (1/rI2) .-1 
x [O(I)cp~~P(l, 3)]. (3.28) 

According to (3.9), the function in the first bracket 
may be written in the form 

(3.29) 
m ... 

The orthogonality operator 0(1) in the expression 
(3.28) produces an r:3 and in the Hartree potential 
we have r~~. Consequently, the expression (3.28) 
will be a sum of terms, each term being the product 
of three integrals of the type II. Theorem 1 is thereby 
proved also with respect to the expression ~3' 

In order to complete the proof of Theorem 1 
let us consider the fifth expression of the matrix 
component (2.3). That expression contains the over
lap integral and a Hartree-Fock-type energy ex-
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pression. It i! known that the Hartree-Fock-type 
energy expression may be expressed in terms of the 
basic integral II' Let us consider the following 
integral which corresponds to the overlap integral: 

::16 = J {[I - 0*(1) - 0*(2) 

+ 0*(1) 0* (2)]1P::'Y *(1 , 2)} 

X {[I - 0(1) - 0(2) 

+ 0(1)0(2)]IP:~P(1, 2») dql dq2' (3.30) 

Taking into account that the orthogonality operator 
in the square bracket is a Hermitian projection 
operator we obtain 

::Is = J HI - 0*(1) - 0*(2) + 0*(1)0*(2)] 

X 1P:!'Y"(I, 2) }1P~~P(I, 2) dql dq2' (3.31) 

An expression of the type (3.31) was already dis
cussed when we analyzed (3.7). We are referring 
to that part of (3.7) in which to the right of Ijr12 
we had the function 1P:~I'(1, 2). That part of (3.7) 
may be written in the following form: 

~ f {[I - 0*(1) - 0*(2) + 0*(1)0*(2») 

X 1P:!'Y'(I, 2)}1P;~(1'-1)(1, 2) dql dq2 (3.32) 

which has the same structure as (3.31). Conse
quently, (3.31) can also be reduced to the basic 
integrals (3.1)-(3.4). 

This completes the proof of Theorem 1. 
Theorem S. Let us consider the fourth (exchange) 

integral of the matrix component (2.3). That inte
gral can be reduced to five basic integrals II, 
12 , •• , , Is where II to 14 were given by (3.1)-(3.4) 
and Is is defined as 

Is = f PAB(1)pcD(2)pBF(3)r~r~~r~3r;3r-;i dql dq2 dqa, 

(3.33) 

where PAB, ••• , PBF were defined in connection with 
the definition of the integrals II to I •. 

Proof. Let us consider the following integral which 
corresponds to the exchange integral of the matrix 
component (2.3): 

f N 1 
::I, = L..J 1P.(1)1P~(2) -

0-1 r 12 

X HI - 0*(1)][1 - 0*(3)]1P:!'Y'(1, 3)} 

X Ifl - 0(2)][1 - 0(3)]1P:~1'(2, 3)} 

Taking into account the fact that [1 - 0(3)] com
mutes with 1P.(I)IP~(2)(ljr12) and that it is a Hermi
tian projection operator we obtain 

J 
N 1 

::14 = L.... 1P.(1)1P~(2) -.-1 rn 

X {[I - 0*(1)][1 - 0*(3)]1P::'Y'(1, 3) J 

X {[I - 0(2)JIP:~P(2, 3)} dql dq2 dq3' (3.35) 

Let us consider first those four terms in which 
IP:~I' occurs without the orthogonality operator: 

:J! = J L 1P.(1)1P~(2) ~ 1P::'Y'(I, 3)1P:~"(2, 3) dqm, 
• r12 

(3.36) 

(3.37) 

X 1P~~1'(2, 3) dql23> (3.38) 

::I! = f L 1P.(1)1P~(2) ~ [0*(1) 0*(3)1P:!'Y*(1, 3)] 
• rt2 

X 1P~~1'(2, 3) dq123 (3.39) 

(dq123 == dql dq2 dqa). 

By proving Theorem 1, we have seen that with 
each integral under consideration the arrangement 
of the interelectronic distances determined the basic. 
integral to which they could be reduced. Taking 
into account (3.5) we realize that each integral of 
the sum in :J~ will contain the product 

from which it follows that each integral which occurs 
in :J! will be a special case of (3.33). Making use of 
the definition of the orthogonality operator we find 
that :J! to :J! will contain the following arrangements 
of the interelectronic distances: 

:J! contains (r-;:} r4~ r;a) i 

:J! contains (r-;; rl~ r;a) i 

:J! contains (r~i r41 r;a); 

from which it follows that these integrals may be 
reduced in the following way: 

(1) The integrals which occur in :J! and ::I! can be 
reduced to the basic integral 14 , 

(2) The integrals which occur in :J: can be reduced 
to the basic integrals II and 12 , 

X dql dq2 dqa. (3.34) Next let us consider those four terms of (3.35) in 
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which ~~~"(2, 3) occurs multiplied by 0(2). Writing 
out the orthogonality operator in detail we have 

J N 1 
~~ = - L ~.(I)~~(2) -

.-1 r12 

X {[I - n*(I) - 0*(3) + 0*(1) 0*(3)]~:!"Y·(I, 3)} 

X {L ~a(2)~~(4)~~~1'(43) I dq1234. (3.40) 
a 

Comparing this expression with (3.25), we realize 
that that part of (3.25) in which the function 
O(I)~~~"(I, 3) occurs is very similar to (3.40). Let 
us denote the corresponding part of ::13 by ~~: 

J N 1 
:J~ = L ~.(2)~~(2) -

.-1 r12 

X {[I - 0*(1) - 0*(3) + 0*(1) 0*(3)]~:!7·(I, 3) I 
X {L ~a(1)~~(4)~:~"(4, 3) I dq1234. (3.41) 

o 

We obtain ::I~ from :J~ by exchanging the indices of 
~.(l) and ~a(2). Consequently, ~~ will be the com
position of the same basic integrals as :J~. Since 
we have shown above that :J~ can be reduced to 
the four basic integrals 11 to 14 , it is proved now that 
the same is true for :J~. 

This completes the proof of Theorem 2. 
Theorem 3. The normalization integral (2.4) can 

be expressed in terms of the basic integrals 11 and 12 • 

Proof. We met with this type of integral when 
we analyzed the matrix component (2.3). The 
normalization integral occurred in the fifth expres
sion of that matrix component. We have shown 
there that the overlap integral can be reduced to 
the basic integrals 11 and 12 • 

Theorem 4. Consider the matrix component of 
the kinetic energy operator, which was given by 
Eq. (2.2). The integrals which occur in the expression 
(2.2) are special cases of the basic integrals 11, 12 , 

and 16 where It and 12 were given by (3.1) and (3.2) 
and 16 is defined as follows: 

16 = J ~~(1)~~(2)~c(2)r~r~r~2( -! a l ) 

X [~D(I)~~(3)~p(3)r~r~r~3] dql dq2 dqa. (3.42) 

Proof. Consider the first integral of the matrix 
component (2.2): 

:J6 = J ([I - O*(ij 11)] 

X [1 - n*(ij / 2)]4>*(ij /I,2)} [-! a l ] 

X {[I - O(ij 11)][1 - O(ij 12)]4>(ij 11, 2)} 

X dql dq2' (3.43) 

Taking into account that [1 - O(ij I 2)] commutes 
with - m Al and that it is a Hermitian projection 
operator we obtain 

36 = J {(I - O*(ij ! 1)] 

X [1 - O*(ij ! 2)J4>*(ii ! 1, 2) H -! AI] 

X {(I - O(ij !1)]4>(ii 11, 2)} dq1 dq2. (3.44) 

The reduction of (3.44) to the basic integrals 11, 
12 , and Ie will take place in several steps. First let 
us consider the integral 

:J! = J 4>*(ij 11,2)[ -! A1]4>(ij 11,2) dql dq2. 
(3.45) 

According to (1.3) 4> may be written in the following 
form: 

4>(ij 11,2) = J.I(ij 11, 2)A(I, 2), (3.46) 
where 

J.I(ii 11, 2) = [~i(I)~;(2) - ~i(2)~;(I)] (3.47) 

and 
A(I,2) = L c(ija{31')(r~?{ + ?{r~)rl~' (3.48) 

ccfl7 

Putting (3.46) into (3.45) and transforming the 
integral according to Hellmann,12 we obtain 

3~ = J [A(I, 2)]2J.1(ij 11, 2) 

X {[ -! arJJ.I(ij 11,2) I dql dq2 

+ ~ J IJ.I(ij 11, 2) 12 ["7 1A(I, 2)]2 dq1 dq2. (3.49) 

Putting (3.49) into (3.44) we obtain 

:J6 = J [A(I, 2WJ.I(ij /1, 2) 

X {[ -! al]J.I(ij 11,2) I dq1 dq2 

+ ~ J /J.I(ij 11,2)12 ['VIA(I, 2)Y dql dq2 

+ J {[ -O*(ij I 1) - n*(ij I 2) 

+ O*(ij 11) O*(ij I 2)J4>*(ij 11, 2)} 

X [-! ad{[1 - O(ij 11)]4>(ij 11,2) I dq1 dq2 

- J 4>*(ij 11, 2)[-! a1] 

X [O(l)4>(ij 11, 2)] dq1 dq2. (3.50) 
12 H. Hellmann, EinfUhrung in die Quantenchemie (Franz 

Deuticke, Leipzig, 1937), p. 73. See also C. C. J. Roothaan 
and A. W. Weiss, Revs. Modem Phys. 32,194 (1960). 
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Since cP and A may be written in the form given 
by (3.5) and (3.48), respectively, it is evident that 
in order to prove Theorem 4 it will be sufficient to 
consider instead of (3.50) the following integral 

~~ = J r:+·?{+}.rJ2+"~~(1)~~(2) 
x {[ -! AI]~i(1)~i(2)} dql2 

+ ~ J ~!(1)~~(2)~i(1)~;(2) 
x [\7tCr~rl~)][\7I(r;ri2)]?{+}. dql2 

+ J {[ - n*(l) - n*(2) + n*(l) n*(2)]~::'Y·(1, 2)} 

X ([ -! AI][l - n(l)]~~~IL(l, 2) I dql2 

- J ~:!'Y·(1, 2){[ -! AI][n(l)~~;"(l, 2)]} dq12 

(dql2 = dql dq2)' 

Introducing the notation 

(3.51) 

XA(q) == -! A~A(q), (3.52) 

the first of the integrals of ::l~ may be written in the 
following form: 

= J ~:~"·(1,2){(-!Al][-n(l) - n(2) 

+ n(l)n(2)]~::'Y(1,2)} dq12' (3.55) 

We observe that, according to the definition of the 
orthogonality operator n(l) [Eq. (2.6)], the functions 

(3.56) 

and 

(3.57) 

depend on the coordinate rl only through the one
electron spin-orbital ~ .. (ql) in the kernel of the 
operator n(l). The application of the Laplacian 
changes each of these functions into the corre
sponding x .. (ql) [according to the definition (3.52)]. 
After that, those integrals which contain (3.56) 
and (3.57) will have the same form as the second 
and fourth integral of the expression (3.32), except 
that now, in each integral, one of the one-electron 
spin-orbitals will be replaced by the corresponding 
Xa function. Consequently, thE' integrals which 
contain (3.56) and (3.57) will be reducible to the 
basic integrals II and 12 , respectively. 

Consider now the second term of (3.55). Writing 
out in detail the orthogonality operator we obtain 
the expression 

which is a special case of the basic integral II. J ~~(1)~~(2)r;r~ri2{[ -! AI][~ ~aC2)~~(3) 
Next, consider the second integral of (3.51). We 
obtain, with elementary manipulations, X ~u(l)~.(3)r~r{rl~]} dq123' (3.58) 

[\7 /r~rl~)](\7I(r~ri2)] 

= b',u + !(a,u + K'Y)]r~+'rJ2+"-2 
+ [aK + !(a,u + K'Y)]r7+<-2ri2+" 

- [!(a,u + K'Y)]r7+<-2r;rit,,-2. (3.54) 

On putting (3.54) into the second term ·of (3,51) 
we obtain a sum of integrals each of which is a 
special case of II' 

We turn now our attention to the third expression 
of (3.51). First, let us consider those terms in which 
the ~:7" occurs without the orthogonality operator. 
Making use of the Hermitian property of the 
Laplacian we obtain 

3~' = J {[ -n*(l) - n*(2) 

+ n*(1)n*(2)]~::'Y·(1, 2)} 

X ([ -i Al]~~~"(l, 2)} dq12 

Comparison with (3,42) shows that each of the 
integrals of the above sum will be a special case of 
the basic expression 16 , 

Next we consider those terms of the third expres
sion of (3.51) in which ~:~"(1, 2) occurs multiplied 
by n(l). Here we observe again that 

(3.59) 

depends on the coordinate r l only through the one
electron spin-orbitals in the kernel of the ortho
gonality operator. The application of the Laplacian 
transforms these into the corresponding x .. functions. 
After that, it is easy to see that these integrals will 
be reducible to the basic integrals II and 12 , 

Finally, let us consider the last expression of 
the matrix component (3.51). In that expression 
we again have the function (3.59). Therefore the 
same arguments, which we have presented in the 
previous paragraph also apply to this integral. 

This completes the proof of Theorem 4. 
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4. THE NONDIAGONAL MATRIX COMPONENTS OF 
THE HAMILTONIAN 

There are two different types of nondiagonal 
matrix components which occur if we use the wave 
function (1.1). We shall have components with one 
different orbital index: 

J f*(ij)Hf(jf) dq (4.1) 

and with two different orbital indices 

J f*(iJ)Hf(kl) dq. (4.2) 

For both types explicit formulas were derived in A. 
Here we first quote these formulas and then in the 
next section investigate them. Let us define the 3-
electron functions if?(ijll 1, 2, 3) and if>(ijl 11, 2, 3) 
as follows: 

if?(ijlll, 2, 3) == if>(ij 11, 2)'P1(3) 

- if>(ij 11, 3)'P1(2) + if>(ij 12, 3)'P1(1), (4.3) 

if>(ijl 11,2,3) == if>(jl 11, 2)'P.(3) 

- if>(jl I 1, 3)'P.(2) + i(jl I 2, 3)'P.(1) , (4.4) 

where if>(i.i 11,2) and if>(jlll, 2) are defined accord
ing to (2.5), i.e., they are orthogonal to all orbitals 
except to "their own" (except to those to which 
the orbital indices of the 2-electron functions are 
referring). According to the formulas (62)-(64) of A 
the matrix component (4.1) is given by the following 
formulas: 

J f*(ij)Lt (-t Am) ]t(jl) dq 

= ~ J if?*(ijl 1123)[ -! A1]if>(ijl 1123) dq123 

+ i! f if?*(ijl I 123)if>(ijl I 123) dq123 

X if>(ijl , 134) dq1234 

- -2
1 J t 'P.(1)'P~(2) ~ <I>*(ijl I 134) 

.-1 rl2 
(.pSi; l) 

X if>(ijl I 234) dq1234 

+ i! J if?*(ijl , 123)i(iil I 123) dq123 

X {f J 'P~(I)[-~J'P.(I) dq1 
.-1 r 1 

(''''j I) 

_ 'P.(I)'P~(2)'P~(I)'Pt(2)J d } q12 . r12 

J f*(iJ)f(jf) dq 

(4.6) 

= i! J if?*(ijl \ 123)if>(ijl \ 123) dq123, (4.7) 

where dq means integration with respect to all N 
coordinates q1 .,. qN. 

We next turn our attention to (4.2). Let us 
define the 4-electron functions if?(ijkl I 1234) and 
if>(ijkl , 1234) as follows: 

if?(ijkl I 1234) = <I>(ij I 12)J'(kl I 34) 

- if>(ij I 13)J'(kl , 24) + iP(ij , 14)I'(kl I 23) 

+ if>(ij I 23)J'(kl , 14) - if>(ij I 24)J'(kl , 13) 

+ if>(ij , 34)J'(kl , 12), 

and 

if>(ijkl I 1234) = I'(ij I 12)if>(kl 1 34) 

- J'(ij , 13)<I>(kl , 24) + I'(ij , 14)i(kl I 23) 

+ J'(ij , 23)i(kl 114) - J'(ij I 24)i(klI13) 

(4.8) 

+ J'(ij I 34)iP(kl 112), (4.9) 

X { ~ J 'P.(I) [ -! A1]'P.(I) dq1}' 
(,,,,iiZ> 

(4.5) where if>(ij (12) and if>(klI12) are defined according 
to (2.5) and 

J f*(ij)[t ( - :J + ~ m.E1 r~Jf(jl) dq 

= -2
1 J if?*(ijl I 123)if>(ijl I 123) ~ dq123 

r12 

+ ~ J if?*(ijl I 123)if>(ijl I 123{ -~J dq123 

+ -2
1 J ± 1'P.(2) 12 ~ <I>*(ijl I 134) 

.=1 r12 
(,¢i i l) 

J'(ab I 12) == l'Pa(l) 'Pa(2)[. (4.10) 
'Pb(l) 'Pb(2) 

According to formulas (73)to (75) of A, the matrix 
component (4.2) is given by the following formulas 

J f*(iJ{t (-! A .. ) }(kl) dq 

= :! J if?*(ijkl , 1234)[-! A1]<I>(ijkl 1 1234) dq1234 
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+ i, J if>*(ijkl I 1234)f(ijkl 11234) dq1234 

x { ~ J ~~(l)[ -t AI]~.(I) dql}' (4.11) 
( ... ijkl) 

J f*(iJ{~ ( - r:) + ~ mt-I r~Jf(kl) dq 

= -4
1 J if>*(ijkl I 1234)f(ijkl 11234) ..l dql234 r12 

+ :, J if>*(ijkl I 1234)f(ijkl I 1234{ -~J dql234 

+ .L J t 1~.(2) 12 ..l if>*(ijkl I 1345) 3' .-1 r12 
( ... ijkl) 

X f(ijkl I 1345) dql2346 

- :, J ~ ~.(1)~~(2) r~2 if>*(ijkl 11345) 

X Cf;(ijkl I 2345) dq12345 

+ i! J if>*(ijkl I 1234) Cf;(ijk1 11234) dql234 

X { ~ J ~~(l{ -~J~.(1) dql + ~ ~ ~ 
( ... ijkl) ( •• , .. iikl) 

_ ~.(I)~~(2)~~(I)~'(2)J 
r12 

X dql dq~}, (4.12) 

J f*(ij)f(kl) dq 

= i! f if>*(ijkl I 1234) Cf;(ijkl 11234) dq1234' (4.13) 

S. ANALYSIS OF THE NONDIAGONAL MATRIX 
COMPONENTS 

The formulas of the preceding section give the 
nondiagonal matrix components for atoms with any 
number of electrons, and for any configuration. 
However, these expressions are rather complicated 
for calculations of wave functions for larger atoms. 
It is therefore worthwhile to study the possibility 
of reducing the complexity of these expressions. 
As was mentioned in Sec. 2 the two-electron func
tions f(ij / 12) are orthogonalized to all orbitals 
~. (8 = 1, 2, .,. N), except to ~i and ~;, by means 

of the orthogonality operator [Eqs. (2.5) and (2.6)]. 
It was shown in A and in I that this orthogonaliza
tion does not change the total wave function f(ij) 
and therefore it is irrelevant for the physical situa
tion which is described by the total wave function 
(1.1). It was shown recently13 that second-order 
perturbation theory leads to the function (1.1), 
and it was suggested that the 2-electron function 
if>(ij I 12) should be orthogonalized also to the 
orbitals ~i and ~;. However, in this case, the flexi
bility of f(ij) becomes restricted. Let us discuss 
here the consequences of this approximation. 

Let us recall here some results from A and I. 
We have shown there that the function 

q,(ij I 12) 

= [1 - fl(ij 11)][1 - fl(ij I 2)]if>(ij I 12), (5.1) 

where the operator fl(ij I 1) is defined by (2.6), 
satisfies the orthogonality condition 

J f(ij 112)~~(1) dql == 0, [8 = 1, 2, ..... NJ' (5.2) 
8 r5 ZJ 

regardless of the form of if>(ij I 12). It was shown 
also that this orthogonalization does not change 
the total wave function f(ij). 

Theorem 5. The function 

~(ij I 1, 2) = [I - flT(I)][1 - fl T (2)]if>(ij I 1, 2), 
(5.3) 

where 

fl 7·(I)F(1) = ~ ~.(1) J 1I'~(2)F(2) dq2, (5.4) 

satisfies the orthogonality condition 

J ~(ij 112)~~(1) dql == 0 (8 = 1, 2, ... N) (5.5) 

regardless of the form of if>(ij /12). 
Proof. We note that the only difference between 

fl(ij / 1) and fl T (I) is that in {h(I), ~i and ~; are 
added to the summation in the kernel of the operator 
fl T • In A and in I we have proved that (5.1) satisfies 
the condition (5.2). From the proof given there 
follows the proof of Theorem 5 in a trivial way. 

Definition. We define an n-fold substitution con
figuration with respect to the Slater determinant ..yo 
in the following way. Let ~I '" II'N, ~N+I ••• be a 
complete set of one-electron spin-orbitals. We call 

13 O. Sinanoglu, Proc. Roy. Soc. (London) A260, 379 
(1961). 
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the first N orbitals from which the Slater deter
minant '1'0 is built the "basic set." An n-fold substi
tution configuration 1 ~ n ~ N is defined as 

fJ(k.k; '" km) = (N!)-1I2 det [rp(1 11) 

· .. rp(i - 1 I i - l)cp(k; I '/,}rp(i + 1 I i + 1) 

· .. rp(m - 1 1m - l)rp(k", I m)rp(m + 1 1m + 1) 

· .. rp(N I N)]. (5.6) 

Obviously (5.6) may be obtained from 

'1'0 = (N!)-1I2 det [rpl .•• rpN] (5.7) 

by replacing the n orbitals rp(i I q), rp(j I q), . .. rp(m I q) 
by the orbitals rp(k; I q), cp(k/ I q), .•• cp(k. I q), 
where the latter are chosen from the complete set 
excluding the basic set. 

Theorem 6. The function (1.1) contains besides 
the Slater determinant '1'0 all single- and double
substitution configurations. 

Proof. Let us expand ~(ij 112) in terms of products 
built from the complete set 

'" 

N N '" 

+ I: I: I: c(ik;)fJ(l) (kj ) 

i-I ;-i+l it,-N+l 

N N ., 

+ I: L I: c(k,j)fJ{l) (k,) 
i-I i-i+l k,-N+l 

Let us consider in the third and fourth expression 
that function in which the Ath orbital is substituted, 
i.e., fJ(I)(kA), (A = 1,2, '" N). For the coefficient 
of this function we obtain from the third expression 

A-I 

I: L c(ikA ) (5.12a) 
kA i-I 

and from the fourth expression we obtain 
N 

L I: c(kAJ). (5. 12b) 
k.. ;-A+! 

Therefore, the sum of the third and fourth expression 
may be written in the following form: 

N '" I: 2: a(kA)fJ(l ) (kA) , (5.13) 
A-I k .. -N+l 

~(ij I 12) = L c(kik;)rp(k i I l)cp(k; I 2). (5.8) where 
k.kj-l 

Multiplication of both sides with HI - P 12), where 
P 12 interchanges ql and q2, yields 

'" 
~(ij I 12) =! L c(k,kj)p.(k,kj I 12), (5.9) 

1:,1:j-l 

where p. was defined by (4.10). On putting (5.9) into 
(1.2), we realize that rp(k; I q) or rp(k/ I q) can not be 
one of the orbitals rpl .•• rpi-lrpi+l ••• rpj-lrpj+l ..• rpN 
since then we would have a determinant with two 
identical rows. We obtain therefore, taking into 
account that c(ab) = -c(ba) and p.(ab \ 12) = 
-p.(ba 112), the following formula: 

'" 
~(ij I 12) = c(iDp.(ij I 12) + L c(ikj)p.(ik; I 12) 

l:j-N+I 

'" 
+ L c(k.JJp.(k,j I 12) 

k,--N+l 

'" + t L c(k.k;)p.(k.k j \12) (5.10) 
k,kj-N+I 

On putting (5.10) into (1.2) and the resulting ex
pression in (1.1) and using the notation (5.6) we 
obtain 

N N 

V = '1'0 + I: I: c(iJ)wo 
1-1 i-i+l 

A-I N 

a(kA) = L c(ikA) + L c(kA'/,}' (5.14) 
i-I i-A+1 

Introducing the notations 1 + LO.j) c(ij) == ao, 
c(AB) == a(AB) , and taking into account that 
a(AB) = -a(BA) and fJ(ll) (AB) = _fJ(ll) (BA) 
we obtain 

N '" 
'It = ao'lto + L L a(kA)fJ(l) (kA) 

A-I k .. -N+l 

N N Q) 0) 

+ I: L: I: I: a(kAkB)fJ(2)(kAkB). (5.15) 
A-I B-A+l k .. -N+l kB-k .. +1 

The first term on the right side is the Hartree-Fock 
function, the second and third contain all single
and double-substitution configurations. Theorem 6 
is therefore proved. 

Theorem 7. The orthogonalization of the two
electron function ~(ij 112) with respect to rp, and rpj 

removes all single substitution configurations from 
the total wave function '1'. 

Proof. As we have seen above, the orthogonaliza
tion is carried out by means of the orthogonality 
operator. Let 0, be the orthogonality operator with 
respect to the orbital CPi, and let us consider 

cl>(ij I 12) = [1 - 0.(1) - OJ(I)] 

X [1 - 0.(2) - 0;(2)]~(ij 112), (5.16) 
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(5.17) 
Putting (5.19)-(5.21) into (4.5)-(4.7) 

where 

0;(1)/(1) = lPi(l) J lP~(2)/(2) dq2' 

J A*(ijl 1 123)A(ijl 1123) dq) dq2 dqa = O. (5.21) 

we obtain 

Writing If> in the", form given by (5.9) we obtain J J*(iJ{t (_! d
m

) JJ(jl) dq 

~(ij I 12) =! L c(k;kj)",(k;k j I 12) (5.18) 
kjkj-N+l 

Comparison with (5.10) shows that those terms 
which yielded the single substitution configurations 
disappeared from <1>. This proves Theorem 7. 

The next theorem will show what will be the 
effect of orthogonalizing Cf>(ij I 12) to lP; and cpj 
on the nondiagonal matrix components. 

Theorem 8. If the orthogonality condition (5.5) 
is introduced, the nondiagonal matrix components 
(4.1) and (4.2) contain only those integrals which 
occur in the diagonal matrix components (2.2)-(2.4). 
In other words, in this case, all integrals which occur 
in the nondiagonal matrix components can be re
duced to the 6 basic integrals (3.1)-(3.4), (3.33), 
and (3.42). 

Proof. Let us first consider the expressions (4.5)
(4.7). Those expressions were derived by assuming 
that the two-electron functions satisfy the ortho
gonality condition (5.2). If we introduce the stronger 
condition (5.5) the only change in the formulas 
(4.5)-(4.7) will be that the 2-electron function .p 
must be replaced by cI>. Let us replace .p by cI> in 
the 3-electron functions (4.3) and (4.4) and let us 
denote the resulting expressions by A and A. Since 
the operators which occur in the matrix components 
(4.5)-(4.7) are 2 electron, 1 electron, and constant 
operators let us integrate in (4.5)-(4.7) with respect 
to qa, (qaq2) , and (qaq2q), respectively. We obtain 

J A*(ijll 123)A(ijll 123) dqa 

= f cI>*(ij 113)cI>(jl 113)cp~(2)lP;(2) dqa 

- J cI>*(ij I 13)cI>(jl 1 23)lP~(2)lP;(1) dqa 

- f cI>*(ij 1 23)cI>(jl I 13)lP~(1)lP;(2) dqa 

= ~ J cI>*(ij I 23)cI>(jl / 2 3) dq2 dqa 

x f lP~(l)[ -! d1]lPi(1) dq), (5.22) 

f J*(iD[t ( -r:) + ~ not-I r~JJ(jl) dq 

= J cI>*(ij I 13)cI>(jl I 13)lP~(2)cp;(2) ...!. dq12a 
r)2 

+ ~ f cI>*(ij I 23)cI>(jl I 23) dq23 

X {J cp~(1)[ -~J<Pi(l) dq) 

+ ~ J Icp.(2) 12 ~~(l)<pi(l) dq12 

("'ijl) 

t J cpB(1)cp~(2)cp~(1)<p;(2) dq12}' 
B~l r)2 

(5.23) 
(.>' i j I) 

f J*(iDJ(jl) dq = 0, (5.24) 

where J(ij) denotes the total wave function con
taining cI>, i.e., denotes the total wave function in 
which the flexibility of If> is restricted by ortho
gonalizing it to lPi and cpj. 

We turn now our attention to the nondiagonal 
component (4.2). We replace .p by cI> in the 4-electron 
functions (4.8) and (4.9) and denote the resulting 
expressions by A and A. Taking into account the 
orthogonality condition (5.5) and the orthogonality 
of the one-electron spin-orbitals, we obtain 

J A*(ijkl /1234)A(ijklI1234) dq3 dq4 

+ J 4>*(ij 1 23)4>(jl I 23)lP~(1)lPi(1) dqa. (5.19) = f cI>*(ij I 34)cI>(kl I 34) dqa4 

J A*(ijl 1 123)A(ijl 1123) dq2 dqa 

= f 4>*(ij I 23)lP(jl 1 23)lP~(1)lPi(1) dq2 dqa, (5.20) 

X ",*(ij I 12)",(kl I 12), (5.25) 

J A*(ijkl 1 1234)A(ijkl 11234) dq2 dqa dq4 = O. 

(5.26) 
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where p. was defined by (4.10). By means of (5.25) 
and (5.26) we obtain from (4.11)-(4.13) 

J J*(iD[t (-! Am) ]J(kl) dq = 0, (5.27) 

J [ N ( z) 1 N N 1 ] 
J*(iD f -T

m 
+ 2]; ~ Tmn l(kl) dq 

= ~ J <i>*(ij I 34)<i>(kl I 34) dq34 

X J /l*(ij I 12)/l(kl I 1, 2) d 
q12, 

T12 

J J*(iJ)J(kl) dq = O. 

(5.28) 

(5.29) 

We can now prove Theorem 8 by simply comparing 
the expressions (5.22)-(5.24) and (5.27)-(5.29) with 
the formulas for the diagonal matrix components 
(2.2)-(2.4). We realize that: (1) (5.22) has the same 
form as the second integral in (2.2); (2) the first 
two integrals of (5.23) have the same form as the 
third and fourth expressions of (2.3), and the 
remaining terms of (5.23) have the same form as 
the last term in the expression (2.3); (3) the integral 
(5.28) has again the same form as the last term of 
(2.3). This completes the proof of Theorem 8. 

6. DISCUSSION 

We have shown in this paper that the matrix 
components of the Hamiltonian with respect to 
correlated wave functions of second order have the 
following properties: 

(1) The diagonal matrix components can be re
duced to the basic integrals IeI6' 

(2) If the 2-electron functions if>(ij I 12) are 
orthogonalized to the orbitals f/', and f/'j, the non
diagonal matrix components can also be reduced 
to the basic integrals leIs. 

We have shown in A and in I that the total wave 
function (1.2) does not change if we orthogonalize 
the 2-electron function if>(ij 1 12) to all orbitals 
f/'1 ... f/'N except f/', and f/'j. However, as was shown 
in the present paper, if if>(ij I 12) is orthogonalized 
also to f/'; and f/';, the flexibility of the total wave 
function becomes restricted. In order to investigate 
the effect of the" (ij) orthogonalization" on the 
total wave function, we have established Theorem 7. 
The statement of Theorem 7 was that the (ij) 
orthogonalization removes all single substitution 
configurations from the 2-electron function if>(ij 112). 

Evidently, it is not possible at the present time 
to understand precisely the meaning of Theorem 7. 

As was pointed out in I, we can set up the 2-electron 
function if> in two different ways. We can set up if> 
either as a finite set of (2 X 2) Slater determinants 
or as a Hylleraas-type function containing T12 

[Formula (1.3»). Theorem 7 shows that, in the first 
case, there can be no single substitution configuration 
among the Slater determinants. There is some 
evidence/4 that in certain cases the effect of the 
single-substitution configurations is negligible com
pared with the terms which represent many-electron 
correlations. However, there is no general theorem 
which would show that the single-substitution con
figurations are always negligible. The situation is 
even more complicated if if> is a Hylleraas-type 
function. It is not known at the present time what 
will be the effect of the" (ij) orthogonalization" 
in this case. We may summarize the situation by 
by saying that the /I (ij) orthogonalization" greatly 
simplifies the nondiagonal matrix components and 
therefore greatly simplifies the calculations; but the 
flexibility of the wave function becomes restricted. 
We emphasize, that full, /I ab initio" calculations must 
be based upon the wave function (1.1) without the 
"(ij) orthogonalization." The nondiagonal matrix 
components for this case are given in Sec. 4. 

In the forthcoming part of this series we shall 
investigate the basic integrals II to 16 , We shall show, 
that the integrals II to 14 and 16 can be given in closed 
form, whereas 15 will be given in the form of an 
infinite series. For the integrals lIto 14 and 16 
general expressions will be derived, and general ex
pressions will be also derived for the terms of the 
series of 16, The expressions which will be given for 
the integrals will be valid for arbitrary correlation 
factors, i.e. J for arbitrary values of the parameters 
K, ••• p which characterize the correlation part of the 
integrals. For the practical calculation of the inte
grals we have developed a method, which will enable 
us to calculate them regardless of the form of the 
radial part of the one-electron spin-orbitals which 
occur in the integrals. 

What we mean by this is the following. Deter
minantal wave functions are available now for a 
large number of atoms and ions. The radial func
tions, which represent the radial parts of the one
electron spin-orbitals which occur in the deter
minantal functions, belong to three main types. 

For light atoms, one can obtain a very good ap
proximation to the empirical energy by using simple 
analytical expressions for the radial parts of the 
one-electron spin-orbitals. For heavier atoms, how-

14 R. E. Watson, Phys. Rev. 119, 170 (1960). 
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ever, good approximations to the empirical energy 
can be obtained only by solving the Hartree-Fock 
equations. The Hartree-Fock eqtiations can be 
solved numerically, or one can obtain (approximate) 
solutions by analytical methods. In the first case 
the radial functions will be given in the form of 
tables; in the second case they will be given as 
linear combinations of a large number of analytical 
functions. Thus, the following three types of radial 
functions may occur in the basic integrals: 

(1) Simple analytical functions, 
(2) Numerical Hartree-Fock functions, 
(3) Analytical (Roothaan-type) Hartree-Fock 

functions. 

The method which we have developed for the 

calculation of the basic integrals will apply to all 
three cases. In other words, we shall be able to 
calculate these integrals, regardless of whether the 
radial functions belong to the first, second, or third 
group given above. Consequently, we shall be able 
to calculate the basic integrals for light atoms (where 
the radial functions are simple analytical expressions) 
as well as for atoms with large number of electrons 
(where the radial function are numerical Hartree
Fock, or Roothaan-type functions). This means 
that the method of correlated wave functions which 
we have been developing in this series, will not be 
restricted to the calculation of wave functions for 
light atoms, but we shall be able to apply the theory 
to the calculation of wave functions for atoms with 
any number of electrons. 
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Hard Core Produced by Orthogonality Constraints* 
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It is showl;l that the effect of a hard core as an external force can be reproduced by requirements 
of o~hogonality. alone. A: fictitious orthonormal set of functions is introduced, which form a complete 
set m the domaIn occupIed by the hard core. The actual wave function is constructed as the eigen
function of a modified kinetic energy operator, and is required to be orthogonal to all members of 
the fictitious set. The limit of infinitely many constraints is carefully discussed. It turns out to be 
impossible to regard the hard core effect as equivalent to some kind of "potential" acting on free 
waves (for which the Hamiltonian would be well defined). However, the eigenfunction is well defined 
in the limit of infinitely many constraints. and is independent of the way in which the fictitious set is 
chosen. 

1. INTRODUCTION 

THE presence of a bound state affects the be
havior of the phase shift in the same channel 

in a definite way. We shall denote the phase shift as 
a function of momentum p by '1(p). For the non
relativistic potential scattering problem, Levinson 
has shown that 

(1) 

where N is the number of bound states. This theorem 
and other related problems have been studied by 
various authors.l The spectrum of scattering states 
is continuous, but it makes sense to interpret the 
theorem as if an analogy to a linear space of finite 
dimension is valid. As the eigenstates of the total 
Hamiltonian, the scattering states are orthogonal to 
each bound state; therefore, the formation of each 
bound state reduces, so to speak, the dimension of 
the space of scattering states by one, and Levinson's 
theorem reflects this fact. Two comments can be 
made at this point. First, the above interpretation 
can be made plausible by considering the formation 
of a bound state as the attractive potential becomes 
deeper in a system enclosed in a finite box. The 
lowest positive energy level drops to a negative one 
at a certain depth of the potential. A negative energy 
level is affected only weakly by the size of the box; 
and it tends to the level of a bound state in the 
limit of an infinite box. Secondly, it has been shown 
in reference I that the Hilbert space orthogonal to 

* The research reported in this paper was supported by 
the National Science Foundation. 

1 N. Levinson, Kg!. Danske Videnskab. Selskab, MatAys. 
Medd. 25J No.9 (1949); P. Swan, Proc. Roy. Soc. (London) 
A228, 10 \1955); J .. M. Jauch, Helv. Phys. Acta 30, 143 (1957); 
R. Haag, Nuovo Clmento 5, 203 (1957)' A. Martin, N. ibid. 
7,607 (1958); ¥. Ida, Progr. Theoret. Phys. (Kyoto) 21, 625 
(1959); S. Tam, Phys. Rev. 117,252 (1960); the last paper 
will be referred to as I in the text. 

all bound states is sufficient to discuss the scattering,' 
and that the constraint of orthogonality readily 
leads to Levinson's theorem, Eq. (1). 

It is the purpose of this paper to apply the above 
idea to the derivation of the phase shift caused by 
a hard core. The use of orthogonality constraints 
imposed on the relevant Hilbert space is basic in this 
approach. If there is a hard core, the region inside 
the core is not available for the physical system. 
Roughly speaking, the Hilbert space in the presence 
of a hard core is narrower than when the hard core 
is absent. The Hilbert space is made narrower when 
an orthogonality constraint is imposed on it. We 
introduce a fictitious complete set of functions in the 
region occupied by the core, and require that a 
physical wave function be orthogonal to all of 
these functions. Then the wave function will vanish 
inside the core, since it cannot have any square 
integrable component there. Under the orthogonality 
constraints, the kinetic energy operator will be 
modified in the way which has been discussed in 
reference I, and the phase shift is obtained for 
each eigenfunction of the modified kinetic energy. 
The phase shift which comes from the orthogonality 
alone turns out to be able to reproduce the hard 
core phase shift. The phase shift of the same nature 
in the bound-state problem explains Levinson's 

2 The .following conjecture is most likely to be valid: The 
Born sene~ does not converge over a certain energy range 
near zero, If there is a bound state. However, if the projection 
to the space orthogonal to the bound state is made and one 
starts with the eigenfunction of the modified Hamiltonian 
the Born series becomes applicable again. This can be con: 
firmed in the example of a separable potential 

(k IVI k') = -Xk(M2 + k2)-1/2 k'(MZ + k'l)-l/Z, 

where X is the strength parameter. A bound state exists for 
X'Ir/4¥' > 1. :The projection .separates the part of the wave 
fupctlOn to which the Born senes cannot apply. (See Appendix 
I 1ll reference 1.) 

1161 
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theorem. Thus, an analog to Levinson's theorem 
exists for the hard core phase shift where N in Eq. 
(1) tends to infinity. 

The limit of infinitely many constraints actually 
needs a close investigation. We start with a system 
of free waves. When the number of constraints is 
finite, the Hamiltonian of the system is given by 
the sum of the kinetic energy and a nonlocal po
tential. In the limit of infinitely many constraints, 
a part of the potential diverges although the eigen
function is well defined. This only means that it is 
difficult to regard the effect of a hard core as equiva
lent to a scattering potential, yet the eigenfunction 
of the system is well defined. If our eigenfunctions 
are used as the basic, instead of free waves, the 
Hamiltonian becomes well defined. It is satis
factory that the completeness of the set of our 
eigenfunctions is different from that for free waves 
such that it is taken into account that there is no 
particle inside the core. 

The use of orthogonality constraints and the 
derivation of the Hamiltonian are discussed in 
Sec. 2. The phase shift is dealt with in Sec. 3. The 
way the limit of infinitely many constraints is 
taken is discussed in detail in Sec. 4. 

2. ORTHOGONALITY CONSTRAINTS AND 
HAMILTONIAN 

The radius of the core will be denoted by a. 
Since the actual wave function does not penetrate 
into the hard core domain, it should be independent 
of the particular choice of the fictitious functions 
in the core domain, otherwise the result depends 
on the mathematical trick used, a situation un
satisfactory from the physical point of view. A set 
of eigenfunctions is defined if the Schrodinger 
equation in the domain a 2:: r 2:: 0 is set up. One 
may introduce a finite local potential and impose 
an arbitrary boundary condition at r = a. At 
r = 0 we require the wave function to vanish. One 
set defined for one potential is equivalent to another 
set for another potential (under the fixed boundary 
condition), in the sense that the same square inte
grable function can be expanded with use of either 
set. Then it ought to be shown that any set of 
eigenfunctions for an arbitrary potential will give 
the same result in producing the hard core effects. 
By the same token. it ought to be shown that any 
boundary condition will give the same result. How
ever we have to begin with the orthogonality to a 
finite number of functions and later take the limit 
of infinitely many constraints. Unless the uniform 
convergence to the limit is guaranteed, it may 

happen that the limit depends on the special choice 
of the set of functions. This happens in writing 
down the Hamiltonian, yet in other respects the 
limit gives reasonable results. We postpone the 
discussion concerning the choice of a complete 
set until Sec. 4 and start with a particular set to 
show that our idea works in many respects. 

Our discussions will be restricted to the S wave, 
the generalization to other cases being obvious. 
The radial wave function will be dealt with as in a 
one-dimensional problem in the domain 0 S r S co 

by considering 'l' = rU, where U is the radial 
wave function in the original sense. In the absence of 
a hard core, the eigenfunction of the kinetic energy 
is given by the free wave 

'l'k) = (2/tr) 112 sin (kr) , r ~ o. (2) 

It is convenient to employ the second quantization 
in momentum space in order to deal with some 
transformations. We assume Bose statistics, but 
the same conclusions follow with use of Fermi 
statistics. Choosing the unit of energy such that 
the kinetic energy is k2 when the momentum is k, 
the Hamiltonian is given by 

(3) 

The operator at creates a particle in the state 'l'k' (2). 
The following fictitious set of functions will be 

chosen inside r = a: 

g,,(r) = {(2/a)1I2 sin (k"r) , 

0, 

Os r < a, 

r> a, 

k" = {-tr/a)n, (n = 1,2, " .). (4) 

This is an eigenfunction of the free wave SchrOdinger 
equation under the boundary condition 

(5) 

In momentum space we have 

Uk) = ('l'k, g,,) = cnkn sin (ak)/W - k!), (6) 

where 

(6') 

The projection operator onto the In will be denoted 
by An. Its matrix element is 

(k IAnl k') = fn(k)f,,(k'). (7) 

When the orthogonality to the first N members of 
the set is introduced, we make use of the notation 
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(8) 

Then A (N) is the projection operator onto the sub
space spanned by the first N members of the set. 
The modified Hamiltonian is given by 

H(N) = fa'" dk dk' 

(n, m = 1,2, ... ,N). (14) 

They are redundant, since they do not appear in 
the Hamiltonian Ho. Furthermore, the following 
subsidiary conditions are imposed on a physical 
state vector ip of the modified Hilbert space: 

(n = 1, 2, ... ,N). (15) 

It is obvious that this system is completely equiva
(9) lent to the system of free waves. Next, we perform 

the unitary transformation 
where W denotes the diagonal matrix defined by 

(k IWI k') = k2 o(k - k'). 

We introduce a matrix VCN) by 

(k !y(N) I k') = _(k2 + k'~(k IA(N) I k') 

where we have put 

(k IX (N) I k') 

+ (k Il(N) I k'), 

= J dk"(k IA{N) I k")(k" IA(N) I k')k,,2 

(10) 

(11) 

mt-l (10''' f ... (k")fn(k")k,,2 dk")fmCk)f,,(kl). (12) 

ip ~ ip' = U-1ip, (16) 

where 
N 

U= II Un, 
n-1 

U,.= exp [~ i( b: J f .. (k)ak dk + conj) ] . (17) 

In the new representation the number of particles 
with the wave function fn(k) is given by the value 
of the number operator b:b". The transformed 
Hamiltonian is given by 

(18) 

The part H 0 is concerned exclusively with the a 
Then the Hamiltonian H{N) can be written as operators, and is given by H(N), (13). The part Hb 

H{N) = Ho + V(N), (13) contains only the b operators and is of the form 
N 

where H. = 2: k!b:b". (19) 
.. -1 

Y IN) = J dk dk' (k I yeN) I k')a"=-a.,. (13') 
5 ~ The part Hao is the cross term and is given by 

An eigenfunction of H(N) is a scattering state3 in 
the field of the nonlocal potential V(N). The phase 
shift caused by yeN) is the orthogonality phase shift 
studied in reference 1. It should be noted that the 
Hamiltonian H(N) is not equivalent to Ho, although 
their spectra are the same; there is no unitary trans
formation which transforms H 0 into H(N). 

In order to understand the change in H dimension
ality" of the Hilbert space, it is instructive to 
follow the transition from the system of free waves 
into the system restricted by the orthogonality more 
closely. We follow steps similar to those of refer
ence I. In order to handle a normaIizable wave 
packet we introduce into the system of free waves 
some redundant variables b,. which satisfy the 
commutation relations 

3 There is also an f .. (k) which is an eigenfunction with the 
eigenvalue zero; they are suppressed by the subsidiary 
conditions (21). 

The transformed subsidiary condition reads 

J a~f(k) dk J a.,f(k') dk'ip' == 0, 

(n = 1,2, ... ,N). (21) 

A particle described by a b operator is confined 
inside r = a and should be neglected in the presence 
of a hard core. This means we have to truncate 
the Hamiltonian (18). In the presence of H ao, the 
subspace spanned by the eigenfunctions of H a can
not be disconnected from the subspace spanned by 
the eigenfunctions of the H 6' In contradistinction 
to the bound state problem, the cross term H~b 
cannot be made to vanish by a proper choice of the 
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If} Here we must discard Hob as one of necessary 
devices in going over from the system of free waves 
to the system with a hard core. Obviously we must 
discard H b also. Therefore we are led to consider 
the eigenfunctions of the Hamiltonian HCN), (13), 
subject to the subsidiary conditions, (21). Now we 
have seen that H CN) cannot be obtained from Ho by 
a unitary transformation alone. It is to be noted that 
a wave function I,.(k) is an eigenfunction of the 
Hamiltonian H CN) with the eigenvalue zero. But 
a state with such a wave function is forbidden by 
the subsidiary conditions, (21). A permissible state 
must be orthogonal to the first N members of the 
complete set. The Hilbert space is made narrower 
by suppressing the subspace pertaining tob particles 
after the transformation (16). 

3. PHASE SHIFT AND EIGENFUNCTION 

Suppose a one-particle eigenstate of H CN) with 
energy p2 is given by 

(22) 

where <Po is the vacuum state. The SchrOdinger equa
tion for h CN) is given by 

J dk'(k 1(1 - A CN» W(1 - A CN» I k')h CN)(k', p) 

= p2hCN )(k, p). (23) 

That h CN) is orthogonal to the I.. can be shown 
as follows: taking the scalar product with 
f..(k) (n = 1, 2, ... , N,) from the left we have 

J dk dk' f,.(k)(k 1(1 - ACN»W(1 - A CN» I k') 

X hCN)(k', p) = 0 

= p2 J f .. (k)hCN)(k, p). (24) 

The second statement follows from a property of 
the projection operator An or A CN), namely, 

J dk f .. (k)(k IA CN) I k') = !,.(k'). (25) 

Therefore, when p does not vanish 

J dk f .. (k)h(N)(k, p) = 0, (26) 

• It can be shown that Bo& vanishes identically only when 
!,.(k) is an eigenfunction of the original Hamiltonian. A wave 
packet confined to the domain r S a cannot be an eigen
function of the original Hamiltonian Bo. 

or 

J (k' IA (N) I k)h(N)(k, p) = O. (26') 

Consequently, the SchrOdinger equation can be 
simplified to 

W - p2)hcN'(k, p) 

- ~ f .. (k) J dk' f .. (k')k'WN)(k', p) = O. (27) 

The solution of (27) under the standing wave bound
ary condition can be put in the form 

hCN)(k, p) = o(k - p) 

+ (e - p2)-1 E fn(k)X,.(p). (28) 

From (26) we have a set of linear equations to 
determine X .. (p) 

N 

E G ... ,,(P)X,,(P) + f ... (P) = 0, 
.. -I 

(m = 1,2, .. , ,N). (29) 

where we have put 

Gm .. (P) = J dk fm(k)f .. (k)(e - p2)-I. (30) 

Substituting (6) into (30), the explicit form for 
Gm,.(P) is 

G () = (_1)"'+" k.. k". sin (2ap) 
". .. p k! - p2 k! _ p2 ap 

(31) 

Equation (31) applies for all p and there is no 
singularity with respect to p. The coefficient X,,(p) 
in (28) is 

X .. (P) = -D(N)(k1 , ••• ,kN)-l D~N)(kl' .,. ,kN) (32) 

by solving (29). In (32) D(N) stands for the de
terminant 

and D~N) means the determinant of the matrix, 
which obtains from [G ..... (p)] by replacing its nth 
column by the one-row matrix [f .. (p)]. It is easy to 
evaluate DCN) and D~N); we find 

N 

DCN)(k
1

, •• , ,kN) = II (k! _ p~-l 
.. -I 
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and 

D~N)(kl' ... ,kN) 
N 

= - IT (k! - p2)-I(-1)"2(II·a) 1/2k,,sin(ap). (35) 
,,-I 

Therefore the coefficient X,,(p) is 

X,,(p) = (-lf 2k,.(1r'ar/{ 1 + ~ k!(k! _ p2)-1 

X sin (2pa)/pa II sin (ap). (36) 

With the X,.(p) thus determined, both the phase 
shift and the wave function can be calculated 
explicitly. 

The formula for the phase shift 7J(p) is 

(37) 

which follows from (28) by the standard method.6 

Explicitly we have 

tan 7]IN)(p) = -2 sin2 (pa)rIN)(p) 

X [pa + sin (2pa)r IN)(p)r\ (38) 

where we have defined 
N 

rIN)(p) = L: k!(k! _ p2)-1 
,,-I 

N 

L: (n1ll[(n1ll - (pa)2rl. (39) 
,,-I 

From the theory of functions we have 
.. 

L: [Cpa - n'll')-I + (pa + n'll')-I] 
,,-I 

+ (pa)-l = cot (pa), 

or 
.. 

L: [(pa)2 - (n'll')2r l 
,,-I 

= [cot (pa) - (pa)-I]/2pa. (40') 

Therefore, we may write r(N)(p) as: 
N 

rIN)(p) = N - L: (pa)2[(pa)2 - (n'll')'fl 
.. -I 

= N + ! + L: (pa)2[(pa)2 - (n'll')2fl 
n-N+l 

- Wa cot (pa) 

= A IN)(p) - !pa cot (pa), (41) 

6 See, for example, W. Kohn, Phys. Rev. 84, 495 (1951); 
especially Sec. II. 

with the abbreviation 

'" 
A (N)(p) = N + ! + L: (pa)2[(pa)2 - (n'll')2rl. (42) 

n-N+l 

Using (41), we can rewrite (38) as 

t 
(N)() pa cos (pa) - 2 A (N)(p) sin (pa) 

an 7] p = 
pa sin (pa) + 2 A (N)(p) cos (pa) 

= tan (xIN)(p) - pa), (43) 

where X (N) is defined by 

tan X(N)(P) = pa/2 A (N)(P). (44) 

We sec from 

(d/dp) A IN)(p) 

'" = -2pa2 L: (n'll')2[(pa)2 - (n'll')2f2:::; 0 (45) 
n-N+l 

that A (N) (p) is a monotonically decreasing function 
having simple poles at 

p = PI = 'II'(N + O/a, . (l = 1,2, ... ), 

such that 

lim A(N)(PI ± E) = ± co, E> O. (46) .-0 
Between two adjacent poles at PI and P 1+ I there is 
only one zero, say at p = QI (l = 1, 2, ... ). The 
first zero Qo is located between 0 and 'II'(N + 1)/a. 
At p = QI the tangent of XIN)(p) becomes singular as 

lim tan XIN)(QI =F E) = ± co, ._0 E> O. (47) 

At p = PI the tangent of XIN) (p) has a zero; from 
(46) we obtain for small E 

tan XIN)(P I - E) < 0 < tan XIN)(P1 + E). (48) 

Therefore, if we set 

X(N)(O) = 0, (49) 

which is in conformity with (44), it follows that 

XIN)(PI) = l'll', (l = 1,2, ... ), (50) 

X(N)(Q,) = (l + !)'II', (l = 0, 1,2, ... ). (51) 

In conformity with (43) and (49), we set 

7J(N)(O) = O. (52) 

Then it follows from (43) and (50), that 

7]IN)(PI ) = -N'II', 

P, = (N + O'll'/a, (l = 1,2, ... ). (53) 

The behavior of 7] (N) (p) fo1' large p is such that it 



                                                                                                                                    

1166 S. TANI AND D. A. UHLENBROCK 

fluctuates around -Nr, but the deviation from 
-Nr becomes smaller as p becomes larger. Indeed, 
we obtain 

'I7(N)(O) - 'I7(N)(co) = Nr, (54) 

a result analogous to Levinson's theorem. From (39) 
we conclude 

Ir(N)(p) I < N(Nr)2[(pa)2 - (Nr)2r1 

for pa > Nr. (55) 

If this is substituted in (38), we see that 

It (N)(P) I < 2 sin
2 

(pa) N(Nr)2 
an '17 pa (pa)2 - (NTrY 

[ 
N(NTrY J-1 

X 1 - pa[(pa)2 _ (NTrY] . (56) 

Therefore, 

'I7(N)(P) = -Nr + OreN /pa) 2] for p» Nr/a (57) 

or 

'I7(N)(co) = -N7r. (57') 

For small p (p « N7r/a), 'I7(N\p) is well approxi
mated by -pa. As can be shown easily from (42) 
and (44), X(N\p) at P = N 1/27r/a is of the order of 
r/2N1/2 for large N. Therefore, for finite p, we have 

lim X(N)(p) = 0, (58) 
N_oo 

and 

lim 'I7(N)(P) = -pa. (59) 
N-'" 

Thus the hard core phase shift is produced in the 
limit of infinitely many orthogonality constraints. 

Next we turn to the behavior of the wave function. 
In momentum space it is given by (28) with Xh(p) 
from (36). In configuration space the Fourier trans
formation yields 

(
2)1/21'" t/t(N)(r; p) =;: 0 dk sin krh(N)(k; p) 

(
2)1I2{ . sin pa = - sm pr + ----==:...£..::---
7r 1 + r(N)(p) sin (2pa)/pa 

X :t 4k! 1'" sin (ak)2 sin (rk) 2 dk}' (60) 
n-I 'Ira 0 (k - kn) (k - p) 

In the last equality, use has been made of (6), (6'), 
(36), and (39). The last integral is evaluated as 

~ 1'" dk sin (ak) sin (rk) 
7r 0 W - k!)W - p2) 

= [P(P2 _ k!)r1 sin (ap) cos (pr), r ~ a, (61) 

and 

= (P2 _ k!)-1[P-1 cos (ap) sin (pr) 

- (-lrk;l sin (knr)] , r < a. (62) 

Therefore, outside the core r ~ a, the wave function 
follows by substitution of (61) into (60): 

1/I(N)(r; p) 

= (2/7r)1/2{sin(pr) _ 2sin
2 

(pa)r(N)(p) cos(pr)} 
ap + sin (2pa)r(N'(p) 

= (2/7r) 112 {sin (pr) + tan 'I7(n) cos Cpr) I 
= (2/7r) 1I2sin (pr + 'I7(N»/COS 'I7(N) , r ~ a, (63) 

with the use of (38) and (39) in passing to the 
second equality. As expected the wave function is 
a free wave with the phase shift '17 (N). Since '17 (N) 

tends to the hard core phase shift as N tends to 
infinity, the eigenfunction is reasonable outside the 
core and approaches the right result as N tends to 
infinity. For r ~ a, substituting (62) into (60), we 
have 

if;(N\r; p) = (2/7r)1/2[1 + sin (2pa)r(N)(p)/par l 

X {Sin (pr) - :t 2( -1) nkn si
2
n (ap)2sin (knr)}. (64) 

n~l a(p - kn) 

We recall that sin (pr) can be expanded into a 
Fourier series for r ~ a 

sin (pr) 

f ~ sin (knr) lB sin (pr') sin (knr') dr' 
n-1 a 0 

f ~ (-I)"kn sin(ap)(p2 - k!)-l sin(k"r). (65) 
,,-1 a 

Hence, 

1/I(N)(r; p) = (2/r)1/2[1 + sin (2pa)r(N)(p)/par l 

X f ~ (-I)"k" sin (ap)(p2 - k!)-l sin(k"r), (66) 
n-N+1 a 

namely, the first N members of the complete set 
are missing in the expansion. The norm of t/tCN)(r; p) 
is small when p is small compared to N 7r / a. Actually 

1B [t/tCN)(r; p)]2 dr a: f k!(P2 _ k!)-2 
o ",-N+l 

,...., L k;2,...., a2/7r2N, p« N7r/a, N» 1. (67) 
n-N+l 

Therefore, for a finite p, we establish 

lim if;CN)(r; p) = 0, r < a, (68) 
N->oo 



                                                                                                                                    

HARD CORE PRODUCED BY ORTHOGON ALITY CONSTRAINTS 1167 

i.e., the actual wave function does not penetrate 
into the hard core domain r $ a. 

and (44). In deriving the last statement of (69), 
we employed 

Before concluding this section, we would like to 
establish the completeness of the set of eigenfunctions 
(28). They are normalized when multiplied by 
cos 71(N) (p) [cf. (63)] and will be denoted by ii,(N) (k; p) 

sin X(N)(P) = ±pa{(pa)2 + 4[A(N)(p)]2rll', (70) 

where the upper sign holds for 

pa < (N + I)1/", (N + 2m)1/" < pa 
ii,(N)(kj p) = cos 71(N)(P) a(p - k) + W _ p')-l < (N + 2m + 1)1/", (m = 1,2, ..• ), 

N 

X L: f,,(k)X,,(P) cos 71(N)(P) while the lower sign holds for 
,,·1 

(N + 2m - 1)1r_ < pa < (N, + 2m)1r, 
= cos 71(N)(P) a(p - k) + W _ p')-l 

X t 4k! sin ~ak) s~ X(N)(P) 
(m = 1,2, ••. ) 

,,-1 (k - k,,)a1/" (69) as implied by (44) and the arguments which follow 
there. To show the completeness of the ii,(N) we 

which follows from (6), (6'), (36), (39), (41), (43), evaluate the integral 

10'" dp ii,(N)(kj p)ii,(N)(k'j p) = cos' 71(Nl(k) a(k - k') 

+ W - k,2)-1 t (k~k: k2 ) sin (ak) sin X(Nl(k') cos 7j(Nl(k') 
10-1 a1/" " 

The integral appearing in the last term is evaluated as follows 

J} (p2Si~2 ~;:<P)_d'k'2) = 10'" 1/"2 a(p2 - kj O(p2 - k,2) sin2 X(Nl(P) dp 

+ W - k,2)-1 10"" (P2 - kj-l sin2 X(Nl(P) dp + (k,2 - e)-1 {O (P2 - k,2)-1 sin2 X(Nl(P) dp 

= (W/2)2k- 2 sin' X(Nl(k) o(k - k') + (e - k,')-11/"/4k sin 2X(Nl(k) + (k'2 - k2)-11/"/4k' sin 2X(NJ(k') , (72) 

where we employed a formula concerning products of principal values.8 Now note that 

2 t.t k2 : k! sin (ak) = -2r(N)(k) sin (ak) = ka cos (ak) - 2 ACNl(k) sin (ak) 

(73) 

which follows from (39), (41), (43), (44), and (70). When (73) and (72) are substituted into (71), we 
find with the help of (70) 

f"-dp ii,(Nl(k; p)ii,(Nl(k'; p) = (cos2 7j(Nl(k) + sin2 7j(Nl(k)] a(k - k') 

+ (k2 - k,2)-1 ~ a1/"(k~~ k!) sin (ak)[sin X(Nl(k') cos 7j(Nl(k') - cos X(Nl(k') sin 7j(Nl(k')] 

+ (k,2 - e) -1 ~ a1/"(k,~k~ k!) sin (ak')[sin X(Nl (k) cos "f/(Nl (k) - cos X(Nl (k) sin 7j(Nl (k)]. (74) 

6 Equation (3.17), Ref. I; S. Tani, J. Math. Phys. 2, 198 (1961). 
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Hence in view of (43), 

fa'" dph(N)(k; p)h(N)Ck'; p) 

N 

= o(k - k') - L 4k![a1r(e - k!) 
n-I 

X (k,2 - k!)r1 sin (ak) sin (ak') 

N 

= o(k - k') - 2: fn(k)fn(k') 
n-I 

= (k /1 - A (N) / k'). (75) 

This shows that the set of eigenfunctions h (N) (k; p) 
is complete in the Hilbert space restricted by the 
orthogonality to the N wave packets f .. (k). Therefore 
the substitution, in which the auxiliary variables (14) 
are used, 

-(N) 1
'" N 

ak - 0 dph (k; p)o" + "f f"(k)b,, (76) 

is a unitary transformation. 
The unitary transformation (76) transforms the 

Hamiltonian H CN), Eq. (9), into 

(77) 

Thus, the Hamiltonian is diagonal after the trans
formation. In the new representation the operator 
a~ creates a particle with the wave function heN) (k; p) 
in the free wave representation. Although its commu
tation relation 

[a", a;,] = o(p - p') 

is the same as that for a free particle, the Hilbert 
space is restricted by the orthogonality constraints. 
We shall come back to the discussion of the commu
tation relation among field operators in Sec. 5. 

4. CHOICE OF FICTITIOUS SET 

In the preceding sections it has been shown that a 
system with a hard core can be produced by or
thogonality constraints in the limits of infinitely 
many constraints. A particular choice of the fic
titious set g,,(r), Eq. (4), or I .. (k), Eq. (6), has been 
made for the boundary condition (5). In case we 
use a different boundary condition 

orthonormal functions will be 

{

[2k![ak! - h sin2 (k"a)r1f/2 sin (knr) , 

gn(r) = 0 ~ r ~ a, 

0, r> a. 

Here k" is determined as a positive root of the 
eigenvalue condition: 

k" cos. (k"a) = A sin (kna). (79) 

The Fourier transform In of g. is 

fn(k) = 2k,,[1r(ak! - h sin2 kna)rl
/
2(k! - k2)-1 

X sin (k"a)[k cos (ka) - h sin (ka)]. (80) 

We omit the detail but assert that all the argu
ments presented in the last section can be repeated 
with use of I,,(k) given by (80) and lead to the same 
conclusion about the phase shift and the wave 
function in the limit N - ex>. The results of the 
last sections are therefore independent of the choice 
of the boundary condition, (5) or (7S), in the limit 
of infinitely many constraints. When the orthonor
mal set is chosen as (SO), we find 

G".,,(p) = 4>",(P)4> .. (p){(2p)-I[X sin (pa) - p cos (pa)] 

X [X cos (pa) + p sin (pa)] 

- raCk! + A2) - h](P2 - k!) o",n/4k!1, (81) 

with 

4>",(P) = 2k", sin (k",a)(p2 - k~) 

X [ak! - h sin2 (k",a)r1l2 (S2) 

in place of (30). Instead of (36), we have 

4k! ( 2 k2 ) -1/2 
X (P) = - r..l. (p.\]-l mY - no 1r 

m l'l'no / a(k!. + h2
) - h 

X [p COS (pa) - A sin (pa)] 

X fI + (2p)-1[P cos (pa) - h sin (pa)] 

X [p sin (pa) + h cos (pa)]B(N) (p) r l 
, (83) 

abbreviating 
N 

BCN)(P) = L (P2 - k!t 14k![a(k! + h2) - Ar l
, (84) 

n-l 

g~(a)/gn(a) = X, (78) which plays a similar role to r CN) (p), (39). The 
with an arbitrary finite h, the corresponding set of phase shift is 

tan 1I CN ) = 1r(2p)-l L X,,(P)/ .. (P) 

[p cos (pa) - A sin (pa)]2B(N)(p) 
(85) 

2p + [p cos (pa) - h sin (pa)][p sin (pa) + h cos (pa)]B(N) (p) 
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instead of (3S); in (S5) we have used (SO) and (S3). 
In place of (40'), we get 

'" 
lim B(N)(p) = 2 L 2k![a(k! + >.2) - >.r1 
N_I%J n-l 

= sin (pa)[>. sin (pa) - p cos (pa)rl. 

Therefore again 

lim 7J (N) = -pa 
N-C'fJ 

(S6) 

according to those arguments in the last section. 
It is to be noted that in the development of the 

arguments above we have needed only 
(1) the orthonormal property of the tn 

J dk f,,(k)t ... (k) = 0 ... ", 

and, 
(2) the existence of G ..... (p) , (30) or (SI), which 
follows from the square integrability of t .. , 

when the number of constraints is finite. 
As for the limit of infinitely many constraints, 

the existence of 
N 

lim :E (P2 - k!)-l, 
N-+f» n-l 

which is guaranteed by (40') or 
N 

lim L k![a(k! + >.2) - >.rl(p2 - k!)-l, 
N-u:o n-! 

which is guaranteed by (S6), is essential. We actually 
never use the quantity 

J dk f .. (k) f ... (k) k2 
, 

although it appears in the Hamiltonian H("), (9). 
It is noticeable that the projection operator A (N) 

is independent of the boundary condition of the 
fictitious set in the limit N -+ (XI. It follows from 
(40') that 

N 

lim (k Ill.. (N) I k') = L f .. (k)f ... (k') 
N-HD 11-1 

= 7r-
1 [(k - k,)-l sin «k - k')a) 

+ (k + k,)-l sin «k + k')a)], (S7) 

when (6) is used; when (SO) is used, (S7) follows 
from 

'" L 2k! sin2 (k"a)(k2 
- k!)-I[ak! - A sin2 (k"a)r1 

.. -1 

Therefore, the first term of the "potential" VIN) 
in (11) becomes independent of the boundary con
dition in the limit N -+ (XI. Note that (S7) is the 
Fourier transform of the projection operatorlin 
the configuration space 

(r 111.1 r') = oCr - r')O(a - r) 

where ()(x) is the unit step function 

()(x) = {I, 
0, 

x> 0, 

x < O. 

(89) 

It seems reasonable to conjecture that all state
ments up to this point will apply equally well for an 
arbitrary set of functions which form a complete 
set in the region 0 ~ r < a. 

We have to point out an unpleasant situation in 
explicitly writing down the Hamiltonian (13). The 
second term of the "potential" V(N), (11), is diver
gent in the limit N -+ (XI, when the set defined by (6) 
is used; in case we use the set defined by (SO), X(·) 
diverges even for a finite N. If 

lim X(N) 

N--'" 

were a well-defined quantity, it would be given by 

1~ (k IX(N) I k') = l'" dk" (k 111.1 k")k,,2(k" 111.1 k') 

with use of the well-defined limit of A (N), given by 
(87). For any two functions F1(k") and F 2(k") , 
which are Fourier transforms of functions with a 
discontinuity at r = a in configuration space, the 
integral . 

J dk" F1(k")k,,2 F2(k") 

diverges even when both Fl and Fs are square 
integrable. This renders the definition of 

lim X(N) 

N ...... 

impossible in our problem. Therefore, we conclude 
that it is impossible to regard the effect of a hard 
core as equivalent to a potential acting on a free 
wave~ The divergent term corresponds to a surface 
potential of infinite height at r = a; the matrix 
element is correspondingly proportional to 

sin (ak) sin (ak') ; 

and the term which is proportional to 

k cos (ak) sin (ak') + k' sin (ak) cos (ak') 

= sin (ka)[>. sin (ka) - k cos (pa)r1. (SS) is finite but not unique, depending on how X is 
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ev~luated; [the result depends on whether (87), or 
either (6) or (80) is used if the limit N ~ co is 
taken at the end1. As has been pointed out in (77), 
the Hamiltonian is well defined when reference is 
made to the eigenfunction of H(N) instead of free 
waves. Therefore, if we first define the eigenfunction 
h(N)(k; p) by (27), disregarding the term X(N) in the 
Hamiltonian, we can construct a system with a 
hard core in the limit of infinitely many constraints, 
and the result if independent of the particular choice 
of the fictitious set. 

5. CONCLUDING REMARK 

The advantage of the present approach lies in the 
fact that it is possible to generalize it to relativistic 
scattering and to multichannel scattering. There
fore it may be useful in a phenomenological approach 
to such a problem as the nucleon-nucleon scattering. 
The procedure to follow, in general, is exhibited in 
Sec. 2. The theoretical point that the introduction 
of hard core is not" adiabatic" is very clear in the 
present approach. The "soft" core for which the 
number of orthogonality constraints remains finite 
is different from a. repulsive square well potential 
with a large but finite height. In the latter case 
one has 

". ,.. 
1J(0) - 1J( (Xl) = 0, 

while in the former we found 
,.. 

'1(0) - '1( ex» = N7I' 

indicating the nonadiabatic nature of the orthogo
nality constraints. 

The remark concerning the "dimensionality of the 
Hilbert space" is relevant to elementary particle 
physics. It is reasonable to introduce a quantized 
field for each of the stable particles in order to 
construct an asymptotic state for a many-particle 
problem. But the Hilbert space thus constructed 

may turn out to be too wide; in that case the intro
duction of suitable constraints can be regarded as 
equivalent to a "core" interaction, soft or hard. 

The conventional method of introducing a hard 
core is to introduce a repulsive square well potential 
and make it infinitely high in the limit. Apparently 
the Hamiltonian is not well defined in the limit. 
The situation has not been improved in our approach 
as far as this point is concerned. However, we have 
obtained a satisfactory result as for the complete
ness of the set of eigenfunctions. This has an im
portant implicat.ion. Transparent discussions have 
been given by Siegere of the commutation relations 
among field operators in the presence of a hard core. 
Here they are simplified corresponding to the fact 
that the hard core effect is dealt with as an external 
force, yet they are different from those in the 
absence of a hard core. The field operator in con
figuration space is defined by 

J (2)1/2 -
1/;(r) = lim dk dp - sin (kr)h(N)(k; p)ap 

N_oo 7r 
(90) 

which is obtained by making a Fourier transform 
of the operator which appeared in (76). From (75), 
(89), and (90) follows the commutation relation 

[1/;(r), 1/;+(r'») = oCr - r')[l - O(a - r»). (91) 

Equation (91) is the right result representing the 
fact that no particle can be found inside the core; 
the commutation relation for a finite number of 
orthogonality constraints tends uniformly to the 
limit (91) as N ~ 00. If one uses the set of eigen
functions in the field of a repulsive square well 
potential as the basis of second quantization, one 
will obtain 

[1/;(r), 1/; + (r'») = oCr - r') 

which does not tend to the limit of infinite height 
uniformly. 

7 A. J. F. Siegert, Phys. Rev. 116, 1057 (1959). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 6 NOVEMBER-DECEMBER 1962 

Studies in Perturbation Theory. 
V. Some Aspects on the Exact Self-Consistent Field Theory* 

PER-OLOV LtiWDIN 

Quantum Chemistry Group, University of Uppsala, Uppsala, Sweden 
and Quantum Theory Project, University of Florida, Gainseville, Florida 

(Received April 9, 1962) 

The independent-particle model in the theory of many-particle systems is studied by means of the 
self-consistent-field (SCF) idea. After a review of the characteristic features of the Hartree and 
Hartree-Fock schemes, the extension of the SCF method developed by Brueckner is further refined 
by introducing the exact reaction operator containing all correlation effects. This operator is here 
simply defined by means of the partitioning technique, and, if the SCF potentials are derived from 
this operator, one obtains a formalism which is completely analogous to the Hartree scheme but which 
still renders the exact energy and the exact wave function. An elementary derivation of the linked
cluster theorem is given, and finally the inclusion of various symmetry properties is discussed. 

1. INTRODUCTION 

T ODAY, there are very good reasons for believing 
that modern quantum mechanics provides the 

essential tool for the theoretical understanding of 
the fundamental properties of the structure of 
matter: atoms, molecules, crystals, and atomic 
nuclei. The Schrodinger and Dirac equations repre
sent in this connection the quintessence of more 
than a century of ingenious experimental work put 
in interplay with theoretical concepts and ideas. 
For simple systems containing one or two particles, 
the quantum theory has been quite successful in 
giving results in complete agreement with experience, 
whereas, for many-particle systems, the success has 
mainly been of a more qualitative nature. 

For many-particle systems, there have actually 
been considerable mathematical difficulties in solving 
the wave equations, and there is a certain conflict 
between the mathematical complexity of the problem 
and the simplicity of the corresponding physical 
and chemical ideas. It is certainly true that the 
basic concepts in atomic, molecular, and solid-state 
theory as well as in nuclear theory are of a quantum
mechanical nature, but it is still far from possible 
to calculate all quantities of interest with a sufficient 
accuracy from the wave equations. So far, most 
treatments have usually been based on some 
simplifying "model" of the system under considera
tion, and the independent-particle model has played 
a dominant role in this connection. Many funda
mental physical concepts are to a large extent also 
based on this scheme. 

... The research reported in this paper was sponsored in 
part by the King Gustaf VI Adolf's 70-Years Fund for 
Swedish Culture, Knut and Alice Wallenberg'S Foundation, 
The Swedish Natural Science Research Council, and in part 
by the Chemistry Research Branch, ARL, AFRD, of the 
Air Research and Development Command, U. S. Air Force, 
through its European Office. 

According to the independent-particle model, each 
particle in a many-particle system moves in the 
outer field acting on the system and the "average" 
field of all the other particles. This fruitful idea 
originates from Bohr,I and it has later been applied 
to the electronic structure of atoms, molecules, and 
crystals in form of the so-called self-consistent-field 
(SCF) schemes developed by Hartree2 and others.3 

These schemes were successfully used for studying 
the electronic clouds of the atoms and their shell 
structure, for investigating the mobile 7r electrons 
of the conjugated organic compounds in organic 
chemistry, and for treating the band structure of 
crystals. In this connection, the Hartree and 
Hartree-Fock schemes were considered as the ulti
mate theoretical tool for understanding how the 
independent-particle model would work in a many
particle system. It seemed natural to assume that 
the qualitative and to a certain extent also quanti
tative success of the model would depend on the 
fact that the interactions between the electrons were 
comparatively weak, and that the correlation effects 
could be considered as a small perturbation. 

This aspect on the independent-particle model 
was changed entirely with the discovery that it 
apparently worked extremely well also for the 
atomic nuclei in the so-called nuclear shell model. 
Here, the explanation could hardly be that the 
forces were weak, and it seemed necessary to find 
an extension of the independent-particle model 
which would work also for strong interactions be
tween the particles. Such a generalization has 
actually been developed by Brueckner and his 

1 N. Bohr, Proc. Phys. Soc. (London) 35, 296 (1923). 
2 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928) 
3 V. Fock, Z. Physik 61, 126 (1930); J. C. Slater, Phys: 

Rev. 35, 210 (1930); P. A. M. Dirac, Proc. Cambridge Phil. 
Soc. 26, 376 (1930); 27, 240 (1931). 
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collaborators' in a form which is closely analogous 
to the Hartree scheme. In the new scheme, however, 
the "average" potentials are derived from a scatter
ing or reaction operator in such a way that the 
correlation between any two particles is exactly 
included, whereas the correlation between three and 
more particles is neglected. This so-called Brueckner 
approximation works exceedingly well in nuclear 
matter, where the forces are of short-range nature. 

In a many-electron system, the Coulomb forces 
are more of a long-range type, and this makes it 
necessary to include also the correlation between 
three and more electrons. How far one should go is 
ultimately a question of order of magnitude and 
depends on the accuracy desired but, in principle, 
it would, of course, be of importance to have all 
correlation effects included. The purpose of this note 
is to show that one can extend the line of develop
ment which goes from Hartree to Brueckner still 
further, and that it is possible to relate the exact 
formal solution of the many-particle Schrodinger 
equation to the independent-particle model by means 
of a self-consistent-field scheme containing "average" 
potentials. These are derived from the exact reaction 
operator in the same way as the Hartree potentials 
were derived from the interaction part of the 
Hamiltonian. Since the exact SCF theory is com
pletely analogous to the Hartree scheme, we will 
start with a brief review of the latter. 

2. SELF-CONSISTENT-FIELD THEORIES 

Let us consider the stationary states of a many
particle system which are described by the solutions 
to the Schrodinger equation H"iI! = E"iI!, where the 
Hamiltonian has the form 

Hop = H co ) + ~ H, + i, 11' Hi; 

(1) 

For completeness, we have here included also many
particle interactions, & the treatment of which ~ 
be very instructive. The prime on a summatIOn 
sign indicates that two indices must never be equal, 
and we will sometimes also use the alternative forms 

'K A Brueckner, C. A. Levinson, and H. M. Mahmoud, 
Phys. Re~. 95, 217 (1954)j K. A. Brueckner, ibid. 96, 508 
(1954)' 97, 1353 (1955)j 100,36 (1955)j K. A. Bruec~er and 
C A ~vinson ibid 97 1344 (1955)j H. A. Bethel ~b~d. 103, 
1353' (1956)' J' GOldstdne, Proc. Roy. Soc. (LoMon) A239, 
267 (1957)' 'H: A. Bethe and J. Goldstone, ibid. A238, 551 
(1957)j L. S. Rodberg, Ann. Phys. (New York) 2,199 (1957)j 
and several other papers. 

I Compare ahlo P. O. Lowdin, Phys. Rev. 97, 1490 (1955). 

i, 11' = fu' i, ~' = ,{;;k' (2) 

The term H (0) is a constant which may be of im
portance from the point of view of convergence6 

but, since it has no influence on the interactions 
between the particles, it will here be temporarily 
omitted. 

We will start by reviewing some of the features 
which are common for all self-consistent-field (SCF) 
schemes. Let us divide the Hamiltonian (1) into 
two parts H = Ho + V, where 

Ho = L: (H, + u;), (3) 

V = - L: u, + L: H,; + L: H;;k + 
i i<i i<i<k 

and u, are one-particle potentials at our disposal. 
The eigenvalue problem connected with Ho is 
separable and, for the unperturbed eigenfunction, 
one obtains 

!Po = !/Il(x1>V4x2) '" !/IN(XN) , (4) 

where 
(5) 

Here Heff(i) = H, + u, is characterized as the 
effeotive Hamiltonian for the particle i, and Xi = 

(r" t" 7'.) is the complete coordinate for this particle 
describing its situation in ordinary space and in the 
spaces associated with spin, isotopic spin, etc. The 
one-particle functions !/I.(x.) are called spin orbitals, 
and we will assume them to be normalized so that 
(!/I. 1 !/I.) = 1, whereas the eigenvalues E. are denoted 
as one-particle or spin-orbital energies. 

Hartree 8oheme. At first, we will leave the anti
symmetry requirement aside. In the so-called Har
tree scheme,a.3 the total wave function w is actually 
approximated by the simple product (4). For the 
corresponding total energy, one obtains 

(!Po IHopl !Po) = L: (!/I. IH.I!/I,) 
• 

+ i, ~' (1/1.1/1; IH,;11/I.1/I;) 

+ i, tt' (1/I,1/I;!/Ik IHw l!/l,1/I;1/Ik) + (6) 

where we have used brackets of the type ( ) for 
integrals over all coordinates and brackets of the 
type ( ) for integrals over one, two, three, or more 
coordinates. The best one-particle functions 1/1. are 
now determined by the variation principle 8(H) = O. 
According to (6), we get directly 

8 For instance, the Coulomb repulsio~ between the nuclei 
in a solidj see P. O. Lowdin, Advances lD Phys. 5, 1 (1956), 
p. 11 f. 
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~(H) = L (~!/Ii IH, + L (!/II IH.II !/Ii) 
,."i 

+ i, .L'. (!/II!/Ik IH'Ikl !/II!/Ik) + ···1 !/I,) 
• J .k",,. 

+ complex conjugate term = 0, (7) 

where the operator in the matrix elements defines the 
effective Hamiltonian (H. + u.). Together with the 
variation of the normalization condition (!/I, I !/Ii) = 1, 
this leads to the Hartree equations (H.+u,)!/I. = Ei!/l, 
of type (5), where the potentials are given by the 
relations: 

all matrix elements of the perturbation V between 
the basic function 'Po and all singly excited functions 
will vanish identically. We note that this theorem 
is a consequence of the definition of the Hartree 
potentials, and vice versa. Since V = Hop - H 0 

and Ho'Po = Eo'Po, one gets further 

(11) 

We note that this relation does not prevent the 
singly excited functions to appear in addition to 'Po 

in the configurational expansion of the total wave 
function, since they may come in through couplings 
with functions which are at least doubly excited 

U;2) = L (!/II IHid !/Ii), 
j"t.i 

(8) with respect to lPo. 

Here each term has an upper index which indicates 
the order of the interaction term in the Hamiltonian, 
from which it has been derived. By using the Hartree 
potentials (8), the total energy (6) can now be 
written in the form 

('Po IHopl 'Po) 

= L (!/I, IH, + !U;2) + lU;3) + · .. 1 !/Ii) 

= <'Po 1 ~ (Hi + !U;2) 

Hartree-Fock soheme. Let us now consider a system 
of fermions obeying the Pauli exclusion principle and 
characterized by wave functions fulfilling the anti
symmetry requirement. In the so-called Hartree
Fock scheme,S the total wave function w is approxi
mated by the "antisymmetric component" of the 
simple product (4), Le., by the Slater determinant 

(12) 

+ !u;3) + ... + ~ u;NJ)1 'Po). 

Since such a determinant is invariant under linear 
transformations of the set !/Ill 1/12, ••• , 1/IN, the basic 
set may be assumed to be orthonormalized so that 
(1/1. \ !/II) = ~;;. For the total energy (Do \H\ Do), 
one obtains the same expression as in (6) but with 

(9) Hi, H iI , Hw, ... replaced by the operators 

We note that (H) is not identical to Eo: The factor 
(1/ p) connected with the potential u;,,) prevents, 
actually, the p-body interaction from being counted 
p times, as it would be in the sum Eo = L. E •• 

Of course, it had been much simpler, particularly 
from semiempirical points of view, if all these coeffi
cients would have been equal to 1, but this occurs 
only if the total Hamiltonian (1) does not contain 
any interactions between the particles. 

In addition to the basic wave function 'Po, we will 
consider the "singly excited" functions 'P •. e., which 
are obtained from 'Po by replacing one, and only 
one, of the functions !/Ik by another ~k which is 
orthogonal to the former, so that (i{tk \ !/Ik) = O. 
By using (3) and (8), one obtains directly 

('P •.•. IVI 'Po) = -(~k lu~2) + uiS
) + ... \ !/Ik) 

+ L (!/I,i{tk IH'kl !/Ii!/lk) 
i"#-k 

+ i1 i~: (!/I,!/IIi{tk IHilkl !/I.!/II!/Ik) + '" = 0, (10) 

which is a form of Brillouin's theorem7 saying that 

7 L. Brillouin, Actualitks sci. et indo No. 71 (1933); No. 159 
(1934); C. M¢ller and M.S. Plesset, Phys. Rev. 46, 618 (1934). 

Hi =H., 

(13) 

Bilk = Hilk L (-l)"Pilk , ... , 
, " 

where P iI , Pm, .. , are permutations working on 
the coordinates Xi, X;, Xt , •••• The Hartree-Fock 
potentials are then given by (8) with the same 
replacements, and formulas (9), (10), and (11) are 
valid with similar modifications, i.e., Brillouin's 
theorem takes now the form 

(14) 

The Hartree-Fock scheme is, of course, com
plicated by the occurrence of the permutations in 
(13) and the corresponding exchange potentials in 
u;,,). There is at least one simplification in com
parison to the Hartree scheme, however, since one 
may now omit the restrictions j ;z£ i, j ;z£ k ;z£ i, ... 
in the definitions (8) depending on the fact that the 
terms for j = i, j, k = i, ... etc. calculated for the 
operators (13) give vanishing contributions. One 
obtains 
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H eff (1-) = H; + L ("'; /H;;(1 - P H )/ "',.) 
; 

(15) 

i.e., the effective Hamiltonians are one and the same 
for all the spin-orbitals ",;. Introducing the Fock
Dirac density matrix 

N 

P(Xl' %2) = L "'k(X1) "'t(x2), (16) 
k-l 

which is the fundamental invariant6 of the scheme, 
one gets further 

H eff (l) = HI + J dx2H 12(1 - P I2)P(X2, x~)z.·_z. 

+ i! J dX 2 dX3Ht23 

X (1 - P 12 - P l3 - P23 + P l23 + Pm) 

X p(x2 , X~)P(X3, xDz,'-z, + ... , (17) 

where the permutations are not supposed to work 
on the primed coordinates x~, x~, '" which are 
put equal to x2, X3, ••• before the integrations are 
carried out. The permutations give rise to exchange 
potentials of a nonlocal nature, so the quantities 
u, are no longer simple functions of X, but have 
operator character. 

Self-consistent-field procedure. Both the Hartree 
and the Hartree-Fock equations represent systems 
of nonlinear integro-differential equations con
nected with eigenvalue problems which are solved 
by the "self-consistent-field" procedure.2

,8 One starts 
out from estimates of the spin-orbitals "'it "'2. '" , 
"'N, evaluates the potentials u, according to (8), 
solves the eigenvalue problems (H; + u;)",. = Ei"'., 
and obtains new functions "'it "'2, ... "'N, which 
provides the starting functions for a new cycle: 

{"';} -+ U i -+ Heff -+ {"'i} 
t I . (18) 

The procedure is continued until it becomes "self
consistent," i.e., no further changes occur in the 
significant figures when the cycle is repeated. The 
iteration process may in certain cases also be 
divergent, but the procedure may anyway be used 
to derive the solution.s Instead of starting from the 
set {"', I. one can start from the potentials UI repre-

I See, for instance P. O. Liiwdin, Technical Note No. 11, 
Uppsala Quantum Chemistry Group, 1958 (unpublished), 
particularly the Appendix. 

senting the "average" fields involved, which has 
given the method its name. 

The eigenvalue problem (5) has in the atomic 
casell been solved by numerical integration, and this 
approach has also been applied to crystals in the 
cellular method 1 0 and in the augmented plane wave 
method.l1 Ritz's expansion method12 was first applied 
to molecules,13 but this technique has later proven 
to be very useful also in connections with atoms 
and crystals. 

3. EXACT SELF-CONSISTENT-FmLD THEORY 

Reaction operator. The extension of the Hartree 
scheme developed by Brueckner and his collabo
rators is based on the use of the scattering or re
action operator.4 Deviating somewhat from the 
conventional approach, we will here derive this con
cept by means of the so-called partitioning tech
nique, which was originally a tool for the numerical 
solution of secular equations of high orders.14 Since 
this method has been described in greater detail 
in a preceding paper,15 we will here limit ourselves 
to a few remarks. 

Let us start by giving an alternative derivation 
of the fundamental formulas in the projection 
operator formalism which corresponds to ClO -order 
perturbation theory. Let ° be a projection operator 
which selects a certain subspace (a) of order g, 
so that 0 2 = 0, ot = 0, Tr (0) = g. Let further 
P = 1 - ° be the projection operator which selects 
its "orthogonal complement" (b), and which satisfies 
the relations p 2 = P, pt = P, OP = PO = O. 

Starting by considering a nondegenerate level E, 
we will choose g = 1. Let 4> be an arbitrary trial 
function or "model" function with a nonvanishing 
projection 04> = ({), which we will normalize so that 
«({) I ({) = 1, i.e., (4) 1014» = 1. For the eigenfunction 
'Jr satisfying the eigenvalue relation (H - E)'Jr = 0, 
one has now the identity: 

8 For a survey of the atoInic SCF calculations, see D. R. 
Hartree, Repts. Progr. in PhX!'. 11, 113 (1948); Calculation of 
Atomic Structures (John Wtley & Sons, Inc., New York 
1957); R. S. Knox, Solid State Physics, edited by F. Seitz and 
D. Turnbull (AcadeInic Press Inc., New York, 1957), Vol. 4, 
p. 413; P. O. Liiwdin, Proceedings of the Robert A. Welch 
Foundation Conference on Chemical Research, 1958, edited by 
W. O. Milligan (Robert A. Welch Foundation, Houston, 
Texas, 1959), p. 5. 

10 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933)' 46, 
509 (1934). ' 

11 J. C. Slater, Phys. Rev. 51, 846 (1937); 92, 603 (1953). 
12 w. Ritz J. reine angew. Math. 135, 1 (1909). 
13 C. A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 

(1938); C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951). 
14 P. O. Liiwdin, Technical Note No. 11, Uppsala Quantum 

Chemistry Group (1958) (unpUblished); Advances in Chem. 
Phys. 2, 207 (1959). 

16 P. O. Lowdin, J. Math. Phys. 3, 969 (1962). 
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w = (0 + P)w = ip + PK-IKw 

= ip + PK-I[K + P(H - E)(O + P»)'lt 

= ip + PK-IPHip 

+ PK-1[K - peE - H)P)w. (19) 

Here K is an arbitrary nonsingular operator which 
will be chosen in a convenient way. One cannot 
simply put K = peE - H)P to get rid of the last 
term, since this operator is actually singular and 
has no inverse, but one can easily circumvent this 
difficulty. Introducing the definitions 

K = a·O + peE - H)P, T = PK-1p, (20) 

where a is an arbitrary number, we note that K 
is nonsingular for a ~ 0 and that one has the relation 

[a·O + peE - H)P]K- 1 = 1. (21) 

Multiplying this equation to the left and right by 
o and P, we obtain for a ~ 0 the following four 
relations: 

OK-IO = a-IO, 
(22) 

peE - H)PK-1P = P 

Since aTlaa = -PK-IOK-1p == 0, the operator 
T is independent of the value of a. Since the quantity 
OK-IO does not occur at all in the eigenvalue theory, 
it is tempting to put a = 0, but this leads actually 
to an improper notation, which is nevertheless some
times used in the theory. The fundamental operator 
T is characterized by the relations 

OT = 7'0 = 0, P(E - H)T = P, (23) 

and, in the following, we will use the symbolic 
notation 

T = P/(E - H), (24) 

but remember that it corresponds to the full defini
tion (20) with a .= o. Substituting our choice (20) 
of K into (19) and using (22), we obtain finally 

w = ip + THip = (0 + THO)ct>, (25) 

showing that the eigenfunction iJr may be derived 
from any trial function ct> having Oct> ~ 0 by means 
of the operator 

n = 0 + THO. (26) 

One has (H - E)iJr = (H - E)nct> 0 for all 
trial functions ct>, which gives (H - E)n == o. 
The operator n is actually characterized by the 
three relations 

Hn = En, n2 = n, Tr (n) = 1, (27) 

and it may hence be characterized as an idempotent 
.eigenoperator to H associated with the eigenvalue E. 
It is not a normal projection operator, and its 

importance comes actually from its connection with 
co-order perturbation theory.Is Using the relation 
O(H - E)n = O(H + HTH - E)O 0, one 
gets for the energy the condition 

OEO = O(H + HTH)O, (28) 

and, after multiplication to the left by <1>* and to 
the right by ct> and integration, this leads to the 
energy formula 

E = (ip IH + H[P/(E - H))HI f{J). (29) 

The eigenfunction (25) is characterized by the 
normalization condition (ip I w) = 1 and, for the 
actual normalization integral, one obtains 

(w I w) = (ip 11 + HT2HI ip). (30) 

Let us now consider the special case when H = 

Ho + V, where V is a weak or strong perturbation. 
In this connection, it is convenient to assume that 
o is the eigenoperator to the unperturbed Hamil
tonian H 0 associated with the level Eo under con
sideration, so that HoO = OHo = EoO. This means 
that 0 will project out the unperturbed eigenfunction 
ipo. In this approach, one needs only a single eigen
function to H 0 and not the complete set associated 
with the entire spectrum, and the "orthogonal 
complement" to ipo is here simply described by 
orthogonalizing any complete set towards ipo. Putting 
H = Ho + V into formulas (26) and (28), and 
using the relation OP = PO = 0, we obtain 

n = (1 + TV)O, (31) 

OEO = O(Eo + V + VTV)O. (32) 

Of particular interest is here the operator 

t = V + VTV, (33) 

which is called the reaction operator associated with 
the perturbation V, the unperturbed Hamiltonian 
H 0, and the specific state under consideration. From 
(32) follows the relation 

E = Eo + (ipo It I ipo), (34) 

showing that the expectation value of the reaction 
operator t with respect to the unperturbed state 
gives the true energy shift. Substitution of (34) into 
(33) gives finally 

P 
t = V + V (Eo _ Ho) _ (V _ (t)o) V, (35) 

which is the fundamental formula for the reaction 
operator here. For some aspects concerning the 
evaluation of this operator, particularly the con
nection with the Schrodinger perturbation theory, 
we will refer to a preceding paper.16 Here we will 



                                                                                                                                    

1176 PER-OLOV LOWDIN 

study t from somewhat different points of view in 
connection with the generalization of the SCF idea. 

The operator W = 1 + TV has been called the 
"wave operator," and we note the three relations 

'I' = W~o, t = VW, ~o = V'I', (36) 

which have sometimes been used to define the 
reaction operator. It is worthwhile to observe that, 
in order to derive the eigenfunction 'I' and its energy 
E, one needs only the "components" PtO and OtO, 
respectively, whereas the components OtP and PtP 
do not occur at all in the theory. This fact will 
later be used to simplify the treatment of the 
reaction operator. 

So far, we have only considered a nondegenerate 
level E, but the detailed discussion in a preceding 
paper16 shows that exactly the same approach can 
be used also for a degenerate level E of order g. 
In this case, it is convenient to choose the projection 
operator 0 to be of the same order, and one obtains 
then the same fundamental formulas as before with 
a reinterpretation of the operator P = 1 - O. 
Hence, it is not necessary to treat the degenerate 
case separately here. 

Exaot SCF theory. Utilizing the reaction operator, 
we will now study the perturbation problem con
nected with the independent-particle model. In this 
case, H 0 and V are defined by (2) and (3), respec
tively, and the unperturbed wave function ~o is 
represented by the Hartree product (4). Introducing 
the notation 

Hint = L: Hi; + L: H';k + "', (37) 
i<i i<i<1& 

for the interaction part of the Hamiltonian and the 
abbreviation U = L:. U,' we have 

Ho = L: (H. + u.), V = -u + Hint. (38) 
• 

Substituting the expression for V into (35), one finds 
that it is convenient to introduce another operator T 

by the relation 

t = -u + T. (39) 

The idea is to separate out the one-particle term in 
t and to let l' represent the part of the reaction 
operator which involves two, three, and more 
particles, Let us write l' in the form 

l' = 1'(1) + 1'(2) + 1'(3) + ... + 1'(N) 

L: Ti + 2\ L.' Tji + 3\ 4:' Tiik + . ", (40) 
J • " • 11k 

where 1'(1)) represents the part of the reaction operator 
involving p particles. For the sake of completeness, 
we have here included also a one-particle term 1'(1), 

which we later will show gives a vanishing con1i!'i
bution. According to (34) and (39), the total energy, 
E, can now be written 

E = <~o IHe + tl ~o) = <~o I L: Hi + 1'1 ~o). (41) 
i 

This expression is, in principle, exact and hence it 
cannot be improved by variation. However, in order 
to establish a connection with the Hartree scheme, 
we will now remove the coupling between ~o and T 

and consider l' momentarily as a fixed operator. The 
right-hand member of (41) is then no longer invariant 
under variations of ~o, and the best function ~o is 
again determined by the condition that this quantity 
should be stationary, which leads to equations of 
the type 

(H. + Ui)Y;. = EiY;. 

with potentials Ui defined by the relations 

Ui = ul1
) + U~2) + ul3

) + ... + U~N) , 
u~l) Ti, 

U!3) = i! j~: (Y;jlh ITml Y;jY;k), •• , , 

(42) 

(43) 

i.e., exactly the same relations as (8) but with the 
interaction terms in the Hamiltonian replaced by the 
operator T. This gives finally the energy formula 

E = <~o l~ (H. + U~l) + !ul2
) 

+ tu;3) + ... ~ U!N»)/ ~o), (44) 

which is completely analogous to relation (9) in the 
Hartree scheme; we note that the contribution from 
U~l) is actually vanishing, as will be shown below. 

The SCF potentials u. are here considerably more 
complicated than in the Hartree scheme, but the 
energy (44) is also the true energy including all 
correlation effects. For the iterative SCF procedure, 
one has the following "flow diagram": 

- l' 

? 
u. - (Hi + u.) - {y;.j -U i (45) 

i I 
Each cycle is here much more complicated than the 
corresponding Hartree cycle (18), since it involves 
the calculation of the reaction operator t. This step 
corresponds actually to an exact solution of the 
many-particle SchrOdinger equation, which it ought 
to be sufficient to carry out only once. There exists 
hence probably a shortcut in the procedure, perhaps 
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by means of the first-order density matrix, and 
research on this point is in progress. Below we will 
show that the formal expression for the reaction 
operator may also be essentially simplified by using 
the conditions (43). 

In this treatment, we have assumed that the 
operator 7 could be written in the form (40) with 
the terms arranged after the number of particles 
involved. Since the operator 7 defined by (35) and 
(39) has a rather complicated character, it is evident 
that the transformation to the form (40) may be 
rather cumbersome and requires a careful mathe
matical analysis. In this connection, it is worth
while to observe that the formulation of the SOF
scheme actually does not depend on the explicit 
knowledge of the expansion (40). This comes from 
the fact that, even if a p-body reaction usually 
cannot be reduced to lower orders, it can never lead 
to wrong results if it happens to be considered as 
being of higher order (p + 1), (p + 2), .,. N. 
One would hence obtain a correct result, even if 
all terms in 7 would be considered to be of the 
highest order possible, i.e., p = N, and the treat
ment would then not involve the expansion (40). 
Applying (43) to the case of p = N, we obtain 

u~ = (Vtd/2 ... Vti-l Vt'+l •.• VtN 

X JrI VtIlh •.. 1/1.-1 Vti+1 •• , VtN), (46) 

and, except for additive constants, these potentials 
are identical with those previously defined by (43). 
For the total energy, one has 

E = (<po I~ (H. + ~U~)1 <po), (47) 

which expression goes over into (44) if 7 is expanded 
according to (40). 

Brillouin-Brueckner theorem. The SOF potentials 
u, have here been derived under the somewhat 
artificial assumption that the operator 7 was mo
mentarily kept fixed when the variation principle 
was applied to the expression (41). We will now give 
a reinterpretation of the conditions (43) which has 
a more natural form and which has deep-going 
eonsequences for the theory. Following the develop
ment in the Hartree scheme, we will in addition to 
the unperturbed <Po consider also all functions <P •.•• 
which are singly excited with respect to <Po. Using 
(39) and (43), we obtain 

<<P •.•. It I <Po) = (Vt1 '" ?tk •.• VtN 

X I - L u, + 71 Vt1 ... Vtll '" VtN) 
• 

= (?tk 1 - Uk + U!l) + Uk2
) + Uk3

) + 
+ ulNl I Vtk) = 0, (48) 

in complete analogy with (10). This gives the 
relation 

I (<P.... I t I CPo) = 0, (49) 

which we will call the "Brillouin-Brueckner theorem" 
in the exact SOF theory. We note that (49) may be 
used to define the SOF potentials u t , and later we 
will show that this approach leads to a simplified 
formulation of the theory. 

In order to study the consequences of (49) in 
greater detail, it is now convenient to partition the 
total Hilbert space for the N-particle functions into 
three parts: one connected with CPo and described 
by the projection operator 0, one connected with 
all sing~y e~cited functions CPI and characterized by 
the proJectlOn operator PI, and the remaining part 
con.taini~g all functions which are at least doubly 
exm.ted .WIth respect to CPo and characterized by the 
prOJectlOn operator Q. 

One may describe such a partitioning by means 
of the eigenfunctions to H 0, but this diagonal repre
sentation is often complicated by the fact that part 
of the eigenfunctions belong to the continuous part 
of the eigenvalue spectrum. It is then often simpler 
to proceed in the following way: let us start from 
the one-particle spaces associated with the N elec
tronic coordinates, and let us, for each coordinate 
x,., to the function Vtlr( = Vtk1) actually occurring in <Po 
add a suitable discrete U orthogonal complement" 
Vtk2, Vtka, Vtk4, '" which is sufficient to make the set 
complete, for instance, by orthonormalizing a given 
complete set with respect to the function Vtlr' A p
fold excited function is now defined by means of 
the ~artree. product formed by substituting p 
fUnctIOns Vt i In <Po by p functions taken from their 
respective orthogonal complements .1"2 .1"3 .1.. • •• '1'. , "1'. , '1'.4, , 

an~ all ~hese functions .describe together a subspace 
whIch Will be charactel'lzed by the projection opera
tor Pp. One has the resolution 1 = 0 + P, P = 
PI + P 2 + Pa + '" + PN , and further 

P = PI + Q, Q = P 2 + P a + ... + PN. (50) 

We .note that the operators 0, Plo and Q are es
sentIally defined by <Po but are independent of any 
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specific choice of the "orthogonal complement" 
ifiN+h ifiN+2, •••• 

One can now write the Brillouin-Brueckner 
theorem (49) in the operator form PltO = 0, in
dicating that the matrix elements of the left-hand 
member with respect to any trial functions will 
vanish identically. Since P = PI + Q, this leads 
to the relation 

PtO = QtO, (51) 

which will now be used to simplify the reaction 
operator. Since u = L. u. is a one-particle operator, 
one has further 

QuO = OuQ = 0, (52) 

depending on the fact that, in forming the corre
sponding matrix elements, each integral will contain 
at least one orthogonality integral. 

For the further analysis, it is convenient to intro
duce temporarily the operator 

To = P[a·O + peE - Ho)pr1p, (53) 

which actually belongs to the Brillouin-type per
turbation theory.15 The operator To is completely 
analogous to T defined by (20) but has Ho instead 
of H. Since To is entirely independent of the param
eter a F 0, we will use the symbolic notation: 

To = PI(E - Ho). (54) 

From the fact that 0 is an eigenoperator to Ho 
follows PI(E - Ho)O = 0, Q(E - Ho)O = 0, 
and, from the eigenvalue properties of Ho, one can 
further conclude that 

(55) 

for arbitrary values of E. This means that the 
operators (E - Ho) and (E - Ho)-l are already 
partly diagonaIized: 

° O. (56) 
---

(E - Ho); we note that the (00) matrix has only 
one element, whereas the (PIP1 ) matrix and the 
(QQ) matrix are both infinite. This gives the im
portant relation 

(57) 

which is also easily proven directly. Hence we obtain 
ToQ = PToQ = QToQ = Q[a·O + Q(E - Ho)Qr1Q, 
and for this operator we will use the symbolic 
notation 

T~ = QI(E - Ho), (58) 

so that now ToQ = T~. We note that this trans
formation is specific for To and that it is not valid 
for T, since the operator (E - H) usually has a 
nonvanishing (P1Q) component. In order to handle 
the operator T, we will proceed in a different way. 

Using the identity (A - B)-1 = A-I + 
A-1B(A - B)-1 and putting A = a·O + 
peE - Ho)P and B = PVP, we obtain the relations 

T = To + ToVT = To(I + VT), (59) 

TV = To(V + VTV) = Tot, (60) 

t = V + VTot, (61) 

of which the last is the Lippmann-Schwinger inte
gral equation; for details and references, see an 
earlier paper.15 Multiplying (61) to the right by 
o and using (51) and (58), we obtain 

to = (V + VT~t)O. (62) 

This equation gives by iteration 

T~tO = T~ VO + T~ VT~tO 
= (T~ + T~VT~ + T~VT~VT~ + ... ) VO (63) 

Q VO 
(E - Ho) - V 

(63) 

which leads to the fundamental transformation 
formula 

TVO = [QI(E - Ho)]tO = [QI(E - H)]H'D'O. (64) 

This relation is here derived by means of an infinite 
power series expansion, but we note that it can also 
be proven directly. The operator of essential interest 
is here given by the symbolic notation 

To = QI(E - H), (65) [~PO ~] 
o 0 but it should, of course, be strictly defined by the 

The diagonal submatrices in (E - Ho)-1 are in relation To = Q[a·O + Q(E - H)Qr1Q which is 
order the inverse of the diagonal submatrices in analogous to (20). According to (31), we get as a 
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first consequence 0«64) that 

n = {I + [Q/(E - H)]H1nt}O, (66) 

and 

I 'It = CPo + [Q/(E - H)]Hintcpo·1 (67) 

The result implies that Pin = 0, i.e., if the exact 
wave function is expanded in terms of Hartree 
products, all singly excited states with respect to CPo 
are missing. This property of the wave function is 
a· direct consequence of the Brillouin-Brueckner 
theorem (49), i.e., of the definitions (43) of the SCF 
potentials u,. 

For a two-particle system (N = 2), one can now 
show that the first SCF orbital y,,1 associated with 
the ground state must be identical to the first 
natural orbital. I6 This follows directly from the fact 
that, in (67), there are no singly excited states, i.e., 
the expansion is diagonalized with respect to the 
first orbital, and a comparison with the so-called 
natural expansion proves then the theorem. The 
connection between the SCF orbitals and the natural 
orbitals for many-particle systems is now also being 
studied. 

Simplifioation of the reaction operator. In this 
section, we will use the Brillouin-Brueckner theorem 
(49) to simplify the formal expression for the re
action operator. Let us start by introducing the 
modified reaction operator K defined by the relation 

K = Hint + ll[Q/(E - H)]Hint . (68) 

According to (64), one has to = (ll + VTV)O = 

According to (41), the total energy takes then the 
form 

E = Eo + (CPo I-u + KI CPo) = (CPo IE Hi + KI cpa), 
i 

(72) 

and these expressions may be used for evaluating 
the denominator (E - H) in (68). For the iterative 
element contained in calculating K according to (68), 
we will refer to a previous paper. I5 

Using (67), (68), (70), and (72), we can now sum
marize our results in the following formulas for the 
wave function 'It and the energy E: 

'It = {I + [Q/(E - H)]Hint}cpo, (73) 

E = (CPO I ~ Hi + Hint + Hint E ~ H Hintl cpa), 

(74) 

whereas the SCF potentials u, are defined by the 
relations 

(cpI ... \- ~ U, + Hint + V E ~ H Hint! cpo) = o. 
(75) 

These equations are so simple and condensed that 
one wonders whether they could be derived in a 
more direct way, and that this is the case will 
actually be shown in Sec. 4. 

Linked-cluster expansion. The key problem in the 
application of the SCF theory is apparently the 
evaluation of the modified reaction operator and, 
according to (68) and (72), one has 

(V + VTQHint)O = (-u + K)O and further Q 
K = Hint + V (Eo _ Ho) _ (V _ (t)o) Hint, (76) 

OtO = O( -u + K)O, (69) 

(70) where (t)o = (-u + K)o. This problem may be 
approached in several different ways.I5 Expansion 
of the inverse in power series gives which relations show that K may be used instead 

of T in calculating the total energy and the SCF 
potentials. This is a considerable simplification, 
particularly since the expression (68) for K depends 
explicitly on the potentials u, only through the 
linear term and implicitly through the occurrence 
of the operator Q. The operator K does not contain 
anyone-particle terms and, instead of (43), we 
have now 

u?) = L (y,,; IKi;1 if; i) , 
i~i (71) 

16 P. O. Lowdin, and H. Shull, Phys. Rev. 101, 1730 (1956). 

'" 
K = Hint + VR~ L [(V - (t)o)R~]kHint' (77) 

k-O 

with the notation 

R~ = Q/(Eo - H o), (78) 

and, if this expansion is systematized after powers 
of Hint, one obtains a result closely associated with 
the Schri:idinger perturbation theory. In connection 
with many-particle systems, one has found that 
considerable simplifications can be achieved by 
means of the so-called linked-cluster theorem. It 
was pointed out by Bardeen that the formal ex
pansions in the many-particle theory contained 
certain terms of a rather strange character, and it 
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was shown by Brueckner17 that all these "unlinked" 
terms would actually cancel depending on certain 
algebraic identities. The general proof of this theorem 
was given by Goldstone18 by means of field-theoreti
cal methods. 

Here we will make only some brief comments 
in this connection concerning certain energy contri
butions which one can easily show give vanishing 
contributions, and which can hence be omitted. 
The proof is built on a simple separability theorem 
for the many-particle eigenvalue problem, and no 
reference to field-theoretical considerations is neces
sary. For this purpose, it is convenient to write the 
interaction term in the Hamiltonian in the form 

Hin/A) = 2\ ~' 'A;;H;; + 3\ ~' 'A;ikH;;k + ... , 
• 11 • 11k 

(79) 

where the quantities 'Aij, 'AHk, ••• are interaction 
parameters at our disposal which have to be put 
equal to 1 in the final results. Let us start by con
sidering the Schrodinger-type perturbation theory, 
let us leave the question of self-consistency aside, 
and let u; be arbitrary fixed potentials, so that 
Ho = L. (H. + u.) and V = -u + Hint. The 
energy E is given by (34) with a reaction operator t 
of the form (35). Using a power series expansion 
of the inverse, one obtains 

... 
t = V + VRo L [(V - (t)o)RotV, (80) 

k-O 

where 

Ro = P/(Eo - Ho), (81) 

or more strictly Ro = P[a·O + P(Eo - Ho)Pf1p. 
It is then possible to systematize the results after 
powers of V, leading to the well-known Schrodinger
type formulas,16 and we will now use the parameters 
~ to further classify the terms within each order. 

Let us divide the particles 1, 2, ... N into groups 
(a), (b), (0), '" , and let ~aa, ~bb' ~ee .. , denote 
the sets of interaction parameters Ai;, ~;;k' ••• in
volving only the particles within such a group. We 
will further let AOb' Aoe , ~b., Aob., •.. denote the sets 
of interaction parameters connecting particles within 
different groups. A term in the energy shift (lPo !t!lPo) 
which· contains the interaction parameters of at 
least two groups (a) and (b) as factors: 

17 K. A. Brueckner and C. A. I..evinson, Phys. Rev. 
97, 1344 (1955); K. A. Brueckner, ibid. 100, 36 (1955); 
for a survey, see the various papers in The Many-Body 
Problem: L'Ecole d'~t6 de physique tMorique, Les Houches 
1958, edited by C. DeWitt (John Wiley & Sons, Inc., New 
York, 1959). 

18 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 

(82) 

without containing simultaneously some factors from 
the set ~ob will be called an unlinked term, and the 
energy contribution from all terms of the same type 
will be denoted by 

(83) 

indicating what ~ factors are involved. This energy 
contribution is apparently independent of the value 
of the interaction parameters in the set AOb' If one 
temporarily puts ~.b = 0, the total Hamiltonian 
takes the simplified form 

H = H. + Hb , (84) 

and the corresponding eigenvalue problem is then 
partly separable, so that 

(85) 

(86) 

where 'l!. and 'It b are usually many-particle functions 
satisfying the relations 

(87) 

where E. and Eb depends only on A •• and Abb, 
respectively. Apparently there are no product terms 
of the type (82), and, for the unlinked terms under 
consideration, one has consequently 

lim E(~.a, Abb) = 0. (88) 
A.b-O 

However, since the value of E(A •• , Abb) IS inde
pendent of the value of the parameters Aoh, one 
obtains 

I E(Aaa, Abb) = 0, I (89) 

i.e., all unlinked energy terms of the same type will 
cancel identically. The result is, of course, also true 
for all various orders in A separately. 

In treating a specific term in the A expansion of 
the energy shift (lPo !t!lPo), one has now to investigate 
the A factor to see whether it is possible to split 
off at least one group of particles (b) which are not 
linked to the others (a) through parameters AOb' 
If this is the case, the term is unlinked and belongs 
to a group of terms which will cancel each other 
identically; the term can hence be omitted. It is 
evident that the energy shift (lPo !t!lPo) can be system
atically reduced in this way, so that it finally con
tains contributions only from "linked terms," 
where the particles connected with the A factors 
cannot be separated into groups. This is the content 
of the linked-cluster theorem in the many-particle 
perturbation theory. 
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Some examples of unlinked A factors are listed 
below: 

(90) 

where we have assumed that different indices denote 
different particles. The following combinations 

(91) 

are all examples of linked A factors. In our study we 
have, so far, used only the separability of the 
Hamiltonian (84), and we have not considered the 
explicit form of the matrix elements whatsoever. 
In treating the linked terms, further simplifications 
are often possible by observing that only those 
interactions which will let the particles return to 
the "ground state" lPo will give nonvanishing con
tributions. 

Here we have considered the expansion of the 
energy shift (lPo ItllPo) in terms of a power series in 
the interaction parameters A, but even other forms 
are possible.15 In this connection, it is worthwhile 
to note that the linked-cluster theorem may be ex
pressed in the somewhat more general form 

lim E = Ea(Xaa) + Eb(Abb) , (92) 
)..b-O 

i.e., if the interaction parameters AOb connecting 
two groups (a) and (b) are put equal to zero, the 
total energy should be additive according to (86). 

The treatment of the wave function '11 is more 
complicated, since it depends on whether one could 
find some convenient form for In W. According to 
(85), one has 

lim In'll = Inwa(Xa.) + In Wb(Abb), (93) 
>'ob-O 

which gives an additivity theorem analogous to (92). 
In case it is possible to express In '11 in terms of a 
power series in A, this series will hence contain con
tributions only from linked A factors. In the same 
way, one can conclude that the logarithm of the 
normalization integral is characterized by a linked
cluster theorem. 

The many-particle theory is in a certain dilemma, 
since the formal expressions obtained contain ap
parently a large number of irrelevant terms which 
give vanishing contributions in the expansions but 
which are still hard to eliminate in the original ex
pressions. It is hence important to refine the theory 
in this respect, and valuable results have been ob
tained by Brueckner and his collaborators.4

•
17 One 

can understand some of the difficulties involved by 
considering an arbitrary operator 

(94) 

where the quantities Wi;, Ww, .•• are interaction 
parameters at our disposal which in the final results 
are put equal to 1. Putting Wab = W.be = ... = 0, 
one obtains n' = n" + nb and, if further X.b 

X. be = ... = 0, application of (85) gives 

r (n > = ('11. Inal '11.) + ('lib Inbl 'lib) 
x}~o O\> ('11. I'll.) ('lib I 'lib) , 

(95) 

~sb-O 

i.e., an additivity theorem. In treating a specific 
term in the (Xw) expansion of (nop) , one has now to 
investigate the combined A and W factor to see 
whether it is possible to split off at least one group 
of particles (b) which are not linked to the others 
through either Xab or Wab or many-particle inter
actions. If this is the case the term is unlinked and, 
using (95), one can prove that the total contribution 
to (nop) from all unlinked terms of the same type 
vanishes identically. Groups of particles which are 
unlinked with respect to A may now be linked to
gether through Wi;, Wi;k, •• , etc., so terms which 
are irrelevant in calculating the energy may become 
of importance in treating other physical quantities, 
provided these are at least of two-body nature. 

In conclusion, we will return to the self-consif"tent
field problem. In each SCF cycle (45), the potentials 
Ui are considered as fixed, and one can then apply 
the results obtained in this section and simplify 
the expansions by means of the linked-cluster 
theorem. Even in the final stage, when self-consist
ency is reached, one can use the same type of argu
ments, but one has now to observe that the potentials 
U i and the one-particle functions if; i actually also 
depend on the interaction parameters Aii' Aw, ... 
which influences the A expansion of the total energy 
and leads to a modification of the linked-cluster 
theorem. 

4. REFORMULATION OF THE SCF THEORY 

Formulas (74) and (75) for the eigenfunction'll 
and the energy E, respectively, look rather different 
from the original partitioning formulas (31) and (32) 
for V = -u + Hint, and we have actually gone a 
rather long way to show how the subspace P = 

PI + Q in the operator T could be reduced to 
the subspace Q by a proper choice of the SCF 
potentials Ui' The same result can now be obtained 
in a much simpler way, which also gives some new 
aspects on the entire SCF theory. 
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It has previously been shown16 that, if the total 
Hilbert space connected with the N-particle problem 
is divided into two subspaces (a) and (b), t-he 
Schrodinger equation may be written in the matrix 
form 

[
Haa Hab] [Co] = E rCa] (96) 
Hh Hbb Co tCo 

which corresponds to two equations. Solving Co 
from the second equation, one obtains 

Cb = (E·l bb - Hbb)-IHbaC., (97) 

and substitution of this expression into the first 
equation gives 

(98) 
with 

Ho .. = Hao + H.b(E·ll>b - Hbb)-IH... (99) 

We note that both subspaces (a) and (b) could be 
infinite. Let us now start out from the resolution 
1 = 0 + PI + Q, and let the subspaces (a) and (b) 
be characterized by the projection operators (j = 
o + PI and Q. respectively. This partitioning turns 
out to be more feasible than the previous one, where 
we instead used 0 and P = PI + Q. Writing (99) 
in operator form, we obtain 

The operator H would give a simple expression of 
the energy and the wave function, if it could be 
partly diagonalized, so that 

The requirement PIHO = 0 immediately gives 

P1( -u + Hint + V E :! H Hint)O = 0, (102) 

where we have used (52) to simplify the expression. 
This relation is apparently equivalent to (75), i.e., 
to the definition (71) of the SCF potentials u, in 
terms of the modified reaction operator K defined 
by (68). The total energy E is now given by the 
isolated diagonal element OHO, and one obtains 

E = (IPO j~ Hi + Hint + Hint E !! H Hin.!lPo), 

(103) 

i.e., formula (74), whereas the wave function 'l' 
corresponding to the vector C having the components 
C" and Cb according to (97) and (101) takes the form 

'If = {1 + [Q/(E - H)]HintllPo. (104) 

which is identical to (73). 
In this way, we have obtained a simple and 

transparent derivation of the fundamental formulas 
in the exact SCF theory. The characteristic feature 
of this theory is apparently that it tries to eliminate 
the subspace PI connected with the singly excited 
states entirely from the expressions for the wave 
function and the energy, and this is achieved by 
choosing the SCF potentials u. properly, i.e., 80 

that PlllO = 0 according to (102). 

S. SYMMETRY PROPERTIES 

In discussing many-particle theory and correla
tion effects, the symmetry properties of the system 
are certainly highly important. III It is well known 
that. in the theory of fermions, the antisymmetry 
requirement connected with Pauli's exclusion prin
ciple eliminates essentially the correlation error 
connected with particles having parallel spins, and 
the total correlation error with respect to the Hartree 
scheme is then diminished by about 50%. The 
remaining correlation error in the Hartree-Fock 
scheme is apparently connected with particles having 
antiparallel spins and, even for electrons, it is quite 
large if one uses the idea of doubly filled orbitals. 
The method of pairing fermions with antiparallel 
spins in one and the same orbital is connected with 
the fact that it renders a simple way of constructing 
total wave functions having a pure total spin. It 
has been pointed out by the author2o that the cor
relation error associated with antiparallel spins 
could be essentially diminished, if one used "different 
orbitals for different spins" and then constructed 
pure spin functions by considering the spin com
ponents which are uniquely defined by the Slater 
determinant Do. In this extended Hartree-Fock scheme, 
the total wave function is hence approximated by 
a spin projection 0 of the determinant Do, Le., ODo. 
Some applications to electronic systems have shown 
that about 85% of the correlation error associated 
with electrons having antiparallel spins could be 
removed in this way. so that actually only about 

19 For a discussion of the connection between symmetry and 
correlation, see P. O. L5wdin, Phys. Rev. 97,1474,1490,1509 
(1955); Advances in Chern. Phys. 2, 207 (1959). . 

20 P. O. Lowdin, Nikko Symposium, Molecular Phys1Cs, 
edited by M. Kotani, (Maruzen Company, Ltd., Tokyo, 
1954), p. 13. Phys. Rev. 97, 1509 (1955); Proceedings of the 
10th Solvay Conference (Gauthier-Villars, Paris, 1955), p. 71; 
Revs. Modern Phys. 32, 328 (1960). 
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1/12 of the original correlation error has to be 
accounted for by real many-particle theory. Hence 
it seems highly desirable to try to incorporate the 
symmetry properties in the SCF theories. 

Antisymmetry requirement. In order to study the 
antisymmetry property of the fermions, it is con
venient to introduce the antisymmetry projection 
operator 

o AS = (N!) -1 L (-I)"P, (105) 
" 

where P is a permutation of the coordinates Xl> 

X2 , ••• , XN. The total Hamiltonian defined by (1) 
is assumed to be symmetric in all coordinates, so 
that HP = PH, and the operators P are then normal 
constants of motion. If one solves the Schrodinger 
equation H'Jr = E'Jr, the eigenfunctions 'Jr will 
automatically belong to one of the symmetry classes 
associated with the permutations, and they will be 
symmetric, antisymmetric, etc. In the theory of 
fermions obeying the exclusion principle, only anti
symmetric wave functions correspond to the states 
occurring in nature, and these wave functions will 
here be selected by the auxiliary condition 

(106) 

i.e., they should be eigenfunctions to OAS associated 
with the eigenvalue 1. For eigenfunctions of other 
symmetry types, one has OAS'Jr == O. Since OAsH = 
HOAs , the operator (105) represents a normal 
constant of motion, which for fermions has the 
value 1. OASis a projection operator which selects 
the "antisymmetric" subspace out of the total 
Hilbert space, and we note that this subspace is 
not only orthogonal but also noninteracting with 
the remaining part of the Hilbert space, i.e., 

OASH(l - OAS) = O. (107) 

In studying the Hamiltonian H = Ho + V, we will 
assume that also H 0 = Li (Hi + Ui) is symmetric 
in all coordinates so that HOOAS = OAsHo. As 
unperturbed wave function, one may then, instead 
of the Hartree product (4), choose the Slater 
determinant 

(108) 

In the exact SCF theory, one can now proceed as 
before by means of the partitioning technique, ob
serving that we can actually confine our interest 
to the antisymmetric subspace, since the Hamil
tonian H is already partly diagonalized. The operator 
P in the reaction operator t defined by (35) does 
then no longer represent the total orthogonal comple-

ment to 0 but the orthogonal complement with 
respect to the antisymmetric subspace. In analogy 
with (13), the operator T will now be modified 
through the antisymmetry so that Til = 0, Tiik = 
. .. = 0, etc., which means that one can remove 
the restrictions on the summations in (43) and base 
the entire study on the fundamental invariant p 
defined by (16). In this respect, the introduction 
of the exchange terms will simplify also the exact 
SCF theory. We note that the potentials Ui = u(x,) 
will be the same for all particles, which implies that 
H 0 = Li (Hi + Ui) will actually fulfill the basic 
symmetry requirement. 

Other symmetry properties. Let us assume that there 
exists some other symmetry property which is repre
sented by a normal constant of motion A commuting 
with Hop and with OAS, say the total spin (8

2
; 8.). 

Let us describe the total Hilbert space by a complete 
set {fd. By introducing the set of projection opera
tors 0 A associated with A, one can split the anti
symmetric basis {O A sf d into a series of subsets 
{O A 0 A sfd, one for each eigenvalue to A. We can 
now confine our interest to one of these subspaces 
at a time, since each one of them is entirely inde
pendent of the other, being not only orthogonal but 
also noninteracting with respect to H 0\>1 and A. 
Within this subspace, we can now start from the 
unperturbed function 0 ADo and carry out a partition
ing procedure, evaluate the reaction operator t, and 
construct an exact SCF theory based on the funda
mental invariant p. This is apparently a generaliza
tion of the extended Hartree-Fock scheme discussed 
above to an exact form. It has already been empha
sized in connection with the electrons that the main 
part of the correlation error affecting the original 
Hartree scheme is removed by an inclusion of the 
symmetry requirements through the projection 
technique, and only a comparatively small part 
of the correlation error has then to be treated by 
true many-particle theory, i.e., by a study of the 
reaction operator. 

6. DISCUSSION 

The purpose of this paper is to give some common 
aspects on the SCF theories, and to study the line 
of development which goes from Hartree, via 
Brueckner, to the exact SCF theory by means of 
the partitioning technique. The formal framework 
is essentially the same, and the degree of accuracy 
depends on how one has approximated the modified 
reaction operator I( defined by (68), and how well 
one has eliminated the infinite subspace P, associated 
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Exact SCF theory 
Brueckner --------,)~ based on reaction 

/ 

operator ~ 

Exact SCF theory ~ 
Semiempirical 
theory 

Hartree :> Hartree-Fock ) based on antisymmetrized ) 

\ reaction operator / 

Extended Hartree-Fock )- Exact SCF theory based 
(different orbitals for on symmetry reduced 

Ab initio 
calculations 

different spins, etc.) reaction operator 

~ One-particle cal-
culations (alternant 
molecular orbitals, etc.) 

Several-parameter 
calculations 

Solution of extended 
HF equations 

FIG. 1. Schematic survey of the various SCF schemes which may be utilized in connection with the development of 
many-particle theory. 

with the singly excited states according to (102). 
One has for the various schemes: 

Hartree: 

Brueckner: 

"" 1- ", . K""2,4 K • .-., . " 
Exact SCF theory: 

,..., 1- ", + 1- ", + 
K,..., 2' 4 Ki; 3' L.J Ki;k 

• \1 • 'Jk 

(109) 

The Brueckner scheme seems to be particularly 
appropriate for nuclear matter, where the forces 
between the particles are of short-range nature, 
whereas the treatment of many-electron systems 
with more long-range forces may require inclusion 

also of the many-particle correlation terms in K. 

In Fig. 1, there is a diagram of the development 
in this field with some aspects also for the future. 

In the introduction, it was emphasized that the 
independent-particle model had been successfully 
applied to many systems: for studying the electronic 
clouds of the atoms, for investigating the mobile 
11" electrons of the conjugated organic compounds 
(the so-called Hiickel scheme), for treating the band 
theory of solids and the nuclear shell model. It is 
now clear that the ultimate basis for this approach 
is not necessarily given by the Hartree and Hartree
Fock schemes, since refined theories of a similar 
type are now available in the form of the Brueckner 
scheme and the exact SCF method. The improved 
methods may be used either for ab initio calculations 
or for constructing semiempirical theories, and one 
can certainly expect a fruitful development in both 
connections. 
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Albertoni, Bocchieri, and Loinger (ABL) have given a 
general prescription to calculate the average E(F) of func
tionals F[P] defined on the space .c of the initial states (Liou
ville density functions) p(x) of an arbitrary (finite) dynamical 
system (8, 2:, p., H). Then they have proved that E(BH ) = 0 
for any B E 2:, where 

BH[PJ == lim liT 
T-= 

[ABL theorem]. On the other hand, these authors claim that 
E gives the same weight to each p E .c, and therefore, they 
contend that their theorem is sufficient to justify the classical 
statistical mechanics. 

In this note, however, the following statements are proved: 

INTRODUCTION 

1 

LET (S, 2:, p.) denote a space S with a measure! 
p. defined on au-ring 2: of subsets B C S, 

and such that p. is nonnegative, totally finite, 
separable, nonatomic, and p.(S) > O. 

Assumption 1: All the basic measure spaces 
(S, ~, p.) considered throughout all this paper will 
be tacitly assumed to satisfy the above requirements. 

An element p E 3C == V(S, 2:, p.) is said to be a 
Liouville density function if and only if p(x) ~ 0 
and J s p dp. = 1; the subset of 3C consisting of such 
functions p will be denoted by .e. 

Any (p.-preserving, invertible, and t-measurable) 

" The author is an exchange visitor under the International 
Atomic Energy Agency Training Program sponsored by the 
National Academy of Sciences. 

t On leave of absence from the Junta de Energ!a Nuclear, 
Madrid, Spain. 

1 P. R. Halmos, Meaaure Theory (D. Van Nostrand 
Company, Inc., Princeton, New JerseY-l ~950). An extended 
real-valued measure p. is called totally nnite if p. (8) is finite. 
Given a totally finite nonnegative measure /.I, let N denote 
the subset of 2; consisting of all p.-null sets; the set '£/N is a 
metric space under the metric d (E, F) = p. (E-F) +/.1 (F-E), 
where E, FE 2:/N. Whenever this metric space is separable, 
one says that p. is separable. This definition can be readily 
extended to more general measures. Finally, a measure space 
(8, ~, p.) is called nonatomic if there exists no element A E 2: 
such that p.(A) r! 0 and either p.(B) = 0, or p.(B) = p.(A) for 
any B E 2;, B ~ A. 

(A) If (8, 2:, p., H) is ergodic with discrete spectrum, then 
every probability measure p in .c for which BH(P] = 0, Jl-almost 
everywhere (for any B E 2:) must be concentrated at e 
[e(x) "" p.-1(8) on 8]. (B) Given (8, 2:, p., Ho) with H. = 0, 
every (normally defined) functional average A(F) such that 
A(BH.) = 0 for any B E 2: must define a probability measure 
pin.c such that p( Ie\) = 1. From (B) it will follow that: (I) 
The ABL average E(F) does not give the same weight to each 
P E .c; actually, E defines a probability measure in .c con
centrated at e; consequently, no significant nontrivial con
clusion can be naturally drawn from the ABL theorem 
regarding the foundations of the classical statistical mechan
ics; (2) it is impossible to restore in general the validity of 
the ABL theorem by choosing a different normal functional 
averaging method. To illustrate (2) a new (nonconcentrated) 
functional average E"(F) is introduced and it is proved that 
E*(BH ) r! 0 for every nonweakly mixing system (8, 2:, p., H) 
and some B E H. 

flow ;1, in S induces a one-parameter continuous 
unitary group U, in 3C which leaves .,c invariant.2

-' 

Let H be the infinitesimal generator of U,; then" 

U, = J eWdE" (1.1) 

where {E>.} is the (continuous on the right) spectral 
resolution of the identity associated to H. A simple 
application of von Neumann's mean ergodic theorem 
and the formula 

lim-
T
1 j T If(t)1 2 dt = L: !lim-

T
1 j T fCt)e- iA

, dtl2 
T-+co 0 ). T-+oo 0 

(1.2) 

[valid whenever f(t) is positive definiteJ2 yields 

lim -T
1 jT I(gl, U,g2) - p.(S)(gt, e)(e, Y2)12 dt 

T-~ 0 

where 

2 E. Hopf, Ergodentheorie (Verlag Julius Springer, Berlin, 
Germany, 1937). 

3 P. R. Halmos, Ergodic Theory (Chicago University 
Notes, 1955). 

• K. Jacobs, Neuere Methoden und Ergebnisse der Ergo
dentheorie (Springer-Verlag, Berlin, Germany 1960). 

6 F. Riesz and B. Sz-Nagy, Lecons d'analyse fonctionelle 
(Akademiai Kiado, Budapest, 1955), Chap. X. 
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UI' U2 E X, gI.A == (EA - EA-O)Ul (X F 0), 

Ul.O == (Eo - EO-O)Yl - I-'-I(S)(e, Ul)e, 

and e(x) == I-' -l(S) on S. [In both (1.2) and (1.3), 
LA contains at most countably many terms dif
ferent from zer02; besides, the expressions for gl.A 
show that only those A's belonging to the point 
spectrum of H may contribute to LA'] 

The flow ::It is said to be weakly mixing2
-4,6 

whenever the member on the left of (1.3) vanishes 
for arbitrary glr Y2. E X; therefore2 (1.3) implies 
that in order for 3, to be weakly mixing it is neces
sary and sufficient that H have no eigenvalue other 
than X = 0, and that this be simple (first mixing 
theorem). 

Many important questions concerning the classical 
systems can be suitably posed and analyzed within 
the abstract framework of a measure space with a 
distinguished flow (for instance, an energy shell 
with the Liouville measure and the flow representing 
the time evolution of the system). Therefore it is 
natural (and suggestive as well) to say that every 
(S, ~, 1-', H) represents (or defines) a finite 
[== I-'(S) < GO] dynamical system. In addition, this 
will be called ergodic, weakly mixing, etc., whenever 
the associated flow ::it is ergodic, weakly mixing, etc., 
respectively. 

Given (S, ~, 1-', H) and B E ~, let us define on £ 
the following functional: 

BH[PJ == lim -T
I 

T~oo 

X iT dt IL p(x,t) dl-'(x) - 1-'-1(S)I-'(B)12, (1.4) 

where p(x, t) == (U,p)(x). As f B p(x, t) dl-'(x) = 
("oB, U,p) and l-'-l(S)I-'(B) = I-'(S)«(('B, e)(e, p), where 
(('B is the characteristic function (ch. f.) of B, (1.3) 
shows that 

BH[P] = L 1("oB.A, pW = (p, HBP), (1.5) 
A 

H B being the nonnegative self-adjoint integral 
operator in X with kernel 

HB(x, y) = L "o';.A(X)(('B.A(Y)· (1.6) 
). 

It is clear from (1.6) that H B belongs to the trace 

• The definition of weak mixing given in references 3 and 
4 applies to the case of a discrete flow cOIlBisting of thepowers 
of a fixed p-preserving invertible traIlBformation ::I. This 
definition and the one given in reference 2 share the property 
that both imply that any transformation in the flow has a 
sim1?le point spectrum consisting only of the number 1. See 
for IIlBtance P. R. Halmos, Lecture8 on Ergodic Theory (The 
Mathematical Society of Japan, 1956), p. 39. 

class7 and that 

(1.7) 

2 

Let (S, ~, 1-') be a measure space (see assumption 1, 
in Sec. 1). The subset £ C X == L 2 (S, ~, 1-'), con
sisting of the Liouville density functions, is a non
linear topological space (with the topology relative 
to X); given a partition 11': S = Bl U B2 U ... U Bn 
[Bi (\ B; = rp for i ,e. j, B. E ~, I-'(B.) > 0], let 
us associate to each p E £ its projection 

n 

p" == L l-'-l(B')«(('Bn P)(('B,. (2.1) 
1 

Clearly: 
Pr E £, lim p" = p (2.2) 

(as the partitions form a directed set this limit will 
be understood as a directed limit) . On the other 
hand, 

p .. : Pr ~ «"oB, , p), ... , «(('B., p» (2.3) 

is a (homeomorphic) map of £r onto the hyper
triangle 

T" == {(~l' ... ,~n) E R" : t ;::: 0, };: ~i = I} (2.4) 

(£r == {p E £ : Pr = pl). 

Therefore, we can easily extend to £, without any 
essential alteration, some of the simplest basic ideas 
and methods of the functional integration8

•
9 in 

linear topological spaces. 
A functional F[p] will be said to be a 1I'-cylinder 

functional (1I'-c. f.) iff F[p] = F[Pr] for every p E £; 
a subset £' C £ whose ch. f. is a 1I'-c. f. will be 
called a 1I'-cylinder set (1I'-c. s.). When 11' is left 
unspecified, we shall briefly say that F is a c. f. 
and £' a c. s. Suppose now given for each 11' a non
negative Radon measurelO 

ii .. in T .. such that 
ii" ( T .. ) = 1, and define 

(2.5) 

7 R. Schatten, Norm Ideals of Completely Continuous 
Operators (Springer-Verlag, Berlin, Germany, 1960), Chap. III. 
A bounded linear operator A in a separable Hilbert space 
.p is said to belong to the trace class if };i< <Pit [AJ<p;) < co for 
a fixed orthonormal basis I <pj I in .p, where [.4} = (A" A) t. 
It is then shown that };j(<pj, A<pj) is also finite. };j(<P;, [A)<pj) 
and };;(<p;, A<pj) are independent of the basis chosen. The 
trace of A is defined as Tr A ;5 };j(<Pj, A<pj). 

8 K. O. Friedrichs, H. N. Shapiro, J. Schwartz, B. Wendroff, 
and T. Seidman, Integration of Functiona18 (New York 
University Notes, 1957), Chaps. I and III-VIII. 

9 I. M. Gel'fand and N. Ya. Vilenkin, ObobSeennye Funkcii 
(Gosudarstvennyi Izdatel'stvo Fizicheskii-Matematichekii 
Literatura, Moscow, 1961), Vol. 4, Chap. IV. 
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for every :Borel set C C T... It is clear that for 
each'll", Eq. (2.5) defines a probability measure p .. 

on the IT-ring, 2: .. consisting of all the 'II"-Borel cylin
der sets ('II"-B. c. s.) p:lC. Since a 'II"-B. c. s. p: 1C 
may also be a c. s. [and therefore a B. c. s.] with 
respect to a different partition '11"', it is plain that in 
order for (2.5) [with'll" arbitrary] to define uniquely 
an additive set function p on the ring V.. 2: .. it is 
necessary and sufficient that the following com
patibility condition,8.9 

(2.6) 

hold whenever P:1C is also a 'II"'-B. c. s. It can be 
similarly proved that (2.6) holds if and only if 

J CPr dii .. = J iP .. , dii ... , (2.7) 

where tJ>r(P 1rP,,) == F[py], q,r'(P ""P1r') = F[Pr']' 
F[p] being an arbitrary continuous c. f. with respect 
to both'll" and '11"'. Whenever (2.6) [or (2.7)] holds, 
it is possible therefore to define uniquely the inte
gral fF as fcp .. dv ... This integral obviously satisfies 
all the requirements of an expectation value (or 
functional average) in the (linear) space ff of all 
the continuous c. f.'s; besides, if {F,,} is a sequence 
of continuous 'II"-c. f.'s ('II" independent of n) such 
that FA ~ 0 pointwise, then f F" ~ 0 (an obvious 
consequence of the definition of f F and the proper
tieslO of the Radon measure v .. in T .. ). These func
tional averages (in ff) so introduced will be called 
normal and only they will be considered in this 
paper. [It is not difficult to prove that any functional 
average A : F ~ A(F) (F E ff) such that A (F .. ) ~ 0 
whenever F.,. (n = 1, 2, ... ) are 'II"-c. f.'s ('II" fixed) 
and F" ~ 0 pointwise, must be normal.] 

Finally, suppose that A is a normal functional 
average: given any continuous functional F, we shall 
define A (F) as 

tional average which will be referred to as the 
natural extension of the normal functjonal average 
A in ff.J 

3 

Albertoni, Bocchieri, and Loingerll (ABL) have 
introduced a functional average, which we shall 
denote by E, for a certain class 8 of functionals 
F[p] defined on "c. 

Concerning E, the author of the present paper 
has proved12

: (i) ff C 8; (ii) the restriction Eo of 
E to ff is a normal functional average such that 
Eo (F) = F[e) for every F E ff [in other words, Eo 
is associated (see Sec. 2) to a set I v .. ) of probability 
measures v.. in T.. satisfying v .. ( I P .. e l) = 1 or, 
equivalently, v.. is a Dirac-delta measure con
centrated at P .. eY3. (iii) No probability measure u 
exists in "c such that f F du = E(F) for every FE 8 
[the proof of (iii) is essentially based on this con
sideration: the functional G[PJ == \\p\12 belongs to 8, 
and E(G) = 2; on the other hand, there exists a 
sequence IG,,1 C 8 such that G" i G pointwise, while 
E(G,,) = G,,[e] i G(e] = 1 ;c E(G)]. 

It is clear that (ii) contradicts the ABL con
tentionll that E gives the same weight to each 
p E "cj on the other hand, (iii) answers the question 
left open in reference 11 as to whether E is associated 
to a probability measure in "c. 

By making use of E, ABL have proved a theorem 
which may be stated as follows: For an arbitrary 
finite dynamical system (8, 2:, p., H), the relation 

(3.1) 

holds for every B E 2:. (See (1.4) for the defini
tion of BH') 

A stronger form of this theorem has been recently 
given by Lomont14 j he has proved that 

(3.2) 

A(F) == lim A(F .. ) (2.8) for every B E 2: and t, where 

BH.,[p] == I fB p(x, t) dp.(x) - p.-l(S)p.(B)12. 
provided that this limit exists and is finite (clearly J 1 

(3.3) 

F .. E ff). To see that this definition is consistent [Both results (3.1) and (3.2) follow at once from 
with the original A for c. f.'8, it suffices to note that this more general statementu : Every monomial 
A(F .. ) = A(F ... ). whenever F is a 'II"-c. f. and'll"' 
is finer than'll". [The extension of A via (2.8) to the 
linear space ff .A consisting of those continuous 
functionals for which (2.8) is defined is also a func-

10 N. Bourbaki, Elements de matMmatique, Livre VI, 
Integration (Hermann & Cie., Paris, France, 1952), Chap. III. 
Let X, 9 be, respectively, a compact topological space and the 
linear space of the continuous real-valued functions defined 
on X. Suppose g endowed with its uniform topology. Any 
continuous complex-valued linear functional I(g) defined on 9 
is called a Radon measure. . 

M[p} == f M(x1 , ••• ,x,,)p(x1) ••• 

X p(x .. ) dP.(Xl) '" dp.(x,,) (3.4) 

11 S. Albertoni, P. Bocchieri, and A. Loinger, J. Math. 
Phys. 1, 244 (1960). 

12 A. Galindo, Communication presented at the II Reuni6n 
de Matematicos Espaftoles, Zaragoza, Spain, November 1961 
(to be published). 

13 Throughout this paper we will say that a probability 
measure p is concentrated at a. fixed point e when pUe}) = 1. 

14 J. S. Lomont, J. Math. Phys. 2, 858 (1961). 



                                                                                                                                    

1188 A. GALINDO 

with 

J IM(x1 , ••• ,x,,) I~ ap.(xl) .,. dp.(xJ < co 

belongs to if B. and the following relation 

E(M) = Eo(M) = M[e] (3.5) 
holds.} 

The aim of the present paper is to show that the 
concentration phenomenon indicated in (ii) cannot 
be avoided by choosing a different technique of 
functional averaging while maintaining the general 
validity of the ABL theorem. More precisely, we 
shall establish the following statements: 

(A) If (S, ~, lA, H) is ergodic with discrete spec
trum, and'll is a probability measure in £, then 
pOp E £ : Barp} :;& On = 0 for every B E ~ if 
and only if pC{ e}) = 1. 

Consequently, it is impossible, in general, to 
find a nontrivial probability measure 'II such that 
B alp] = 0 'II-almost everywhere for every B E ~. 
(Nontrivial == nonconcentrated at e; note that 
Ba[e] is always zero.) 

(B) Given (S, ~, Po, Ho) with Ho == 0, every normal 
functional average A in (f such that A(Ea.) = 0 
for each B E 2: must define in £ a probability 
measure, 'II, concentrated at e (i.e., the additive set 
function v on V" ~ .. associated to A (see 2) must 
be countably additive and its extension to the 
minimal u-ring containing V.. ~.. must satisfy 
p(leD = 1). 

The ABL theorem implies that Eo(B a.) = 0; 
therefore (B) [together with the fact that Eo is 
normalll ] provides an alternative proof of the 
"concentration" of Eo, since, first, the definition 
of Eo does not depend upon H, and secondly, if 
(S, ~, Po, H) is a finite dynamical system, (S, 2:, Po, Ho) 
is also one (and a trivial one, indeed). As we antici
pated elsewhere,l1 this result clearly indicates, in 
our view, that no significant nontrivial conclusions 
can be reasonably drawn from the ABL theorem 
regarding the foundations of the classical statistical 
mechanics. 

On the other hand, (ll) and (B) imply that the 
normal functional average Eo introduced by ABL 
can be uniquely characterized by (3.1) [note (3.5)]. 
Therefore, the general validity of the ABL theorem 
cannot be restored by choosing a different (and 
more suitable) normal functional averaging method. 

Finally, and to illustrate (B), we shall exhibit 
a new normal functional average E* associated to 
measures jJ" with positive density functions and we 
will verify that E*(B 0) ~ 0 for some B E ~ when
ever (S, 2:, Po, H) is not a weakly mixing system. 

PROOFS OF STATEMENTS (A) AND (B) 

4 

Proof (A). Let (S, 2:, IA. H) be ergodic with dis
crete spectrum; as Po is separable (assumption I, Sec. 1) 
there exists a countable family, say {Bn }, of elements 
of 2: such that (i{JB., g) = 0 (n = 1, 2. '" , g E 3C) 
impliesl g = O. Therefore, if {h.l denotes the 
(complete orthonormal) system of (simple) eigen
functions of H (Ht.,.. == A,j.,..), it is clear that, for an 
arbitrarily given m, there exists some integer I say 
mh such that i{Jffl1I ffI == (f.,.., 'PB .. )f.,.. :;& 0; in other 
words, the system {'P"" .... } (m = 1,2, ... ) is orthog
onal and complete. Consequently, in order for 
p E £ to satisfy 

(n = 1,2, ... ), (4.1) 

it is necessary and sufficient that p = e (see 1 for 
the definitions of £ and (B,,) a, and take also into 
account the spectral properties of H]. 

Suppose now that 'II is a probability measure 
in £ such that: Every B aW] is "..integrable and 
f Bo dv = 0 [or equivalently, since BN ~ 0, that 
v({p E £ : Bawl :;& 0) = 0 for every B E ~J. The 
above result implies that 

Ie} = n .. {p E £ : (B,,)H[P] = OJ (4.2) 

and therefore, 

£ - Ie} = V .. Ip E.c : (B,,)H[P] ~ OJ. (4.3) 

Consequently 

v(£ - {eD 5 L pOp E £ : (B .. )o[p] ~ O}) = 0, .. 
(4.4) 

and hence vO e}) = 1. 
This proves the "only if" part of (A); the "if'P 

part is trivial, since Bore) = 0 for every B E ~. 
Therefore, (A) is established, Q.E.D. 

Remark 1. That in some cases a stronger state
ment may actually hold is revealed by the following 
significant example: 

Take S as the 2-dimensional torus2 
Xi (mod 1) 

i = 1, 2, Po as the ordinary Lebesgue measure in 
the unit square, and::l t : (Xl' X2) -+ (Xl + t, X2 + at), 
where a is irrational. It is well known'l that 31 is 
ergodic with discrete spectrum. The eigenfunctions 
f"1o k • of H are exp {2'lri(klXl + k2X2)} (kl' k2 are 
arbitrary integers) with (simple) eigenvalues 
27T(k1 + ak2)' Let Bo == I (XIt X2) E S: 0 ::; Xl ::; 

a;. < 1, 0 ::; x2 ::; ~ < I} with ah a2 (fixed) ir
rationals. Then (fk, .k.. 'PB.) ~ 0 for every t,., .k,. 
and therefore (Bo)a[p] = 0 iff p = e. Consequently, 
in order for a probability measure p in £ to satisfy 
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J (Bo) B dv = 0, it is necessary and sufficient that where 
vUe}) = 1. 

5 

Proof of (R). Let (8, ~, JI., Ho) be a (trivial) finite 
dynamical system with Ho = 0. Given a partition 
11" : 8 = BI V ... V B" (B; E ~, B; (\ B; = c/J 
for i ~ j, pCB;) > 0), it is obvious [see (2.1)] that 
the fulfillment of the following relations: 

(cps, - jI.-I(S)(e, cps,)e, p,,) = 0, 

i = 1,2, ... ,n, (5.1) 

implies p." = e; and hence 

i = 1,2, '" ,n, (5.2) 

iff p" = e, since 

(Bi)H.[P] = 1 (CPs , - JI. -1(S)(e, cps,)e, p) 12 

= (B;)H.[P .. ] (5.3) 

{see (1.1), (1.3), and (1.5), and note that Ho = 0, 
by hypothesis]. 

Consequently, in order for a probability measure 
ii .. in T .. [(2.4)] to be such that 

J (ffii)H. du" = 0, i = 1,2, .. , ,n, (5.4) 

where (ffi;)s.(P .. P .. ) == (Bi)B.[P"J, it is necessary 
and sufficient that ji .. ( {P "e}) = 1. 

Suppose now that A is a normal functional 
average in 5' such that A (BB.) = 0 for every B E ~. 
As B H. is a continuous c. f. [see (5.3)], we have: 

where 11" is any partition containing B, and J7 .. the 
corresponding measure in T .. associated to A [see 2]. 
But B is arbitrary; hence (5.4) is fulfilled and 
therefore v,,({P .. e}) = 1; it is now a trivial matter 
to verify that the additive set function p defined 
on V .. ~ .. by {P .. } [see (2.5)] is actually countably 
additive and that its extension to a probability 
measure is concentrated at e, Q.E.D. 

NEW AVERAGING METHOD 

r ~(~I"'" ~11) dO' .. (~) Jr r 

-11 11-~' 11-~,- ... -e.-. 
= d~1 d~2 •.. d~1I_1' 

o 0 0 

X CP(~I' ... '~"-l' 1 - ~I - ... - ~n-I) (6.2) 

and C is an arbitrary Borel set in T ... 
By using the formula 

x { (~ - '1)a,-I'1a.-1 d'1 

it is easy to show that 

v .. (C) = J7 ... (C'), (6.4) 

whenever p;IC = P;~C'; therefore, the measures 
{P .. } associated to {v .. } [(2.5)] are compatible. Let 
us denote by E* the normal functional average 
defined by {v,,}. 

We maintain that every functional 

K[p] == (p, Kp), (6.5) 

where [{ is self-adjoint, nonnegative and in the 
trace class, belongs to 5 g •• 

In fact, if [{ satisfies these requirements, it is 
knownT that there exists an orthonormal set {f .. } C 
:JC == L2 (8, ~, "') such that Ii is an integral operator 
with kernel 

[{(x, Y) = 1: XJ*..(x)f1l(Y) ' X" ~ 0, (6.6) 

and 

Tr [{ = 1: X .. « (0). (6.7) 

On the other hand, a simple application of the 
formula 

(ft; > 0) (6.8) 

yields 

6 E*(K .. ) = !(K[e] + t JI.-I(B.) 
Let (8, ~, JI.) be a measure space and let us define 

in T 1f a probability Radon measure ;i" as follows: 
X L,xs, [{(x, y) dp(x) dJ.l(Y»). (6.9) 

(6.1) Writing "'i == ",-l/2(Bi )CPBO (clearly 1i"',1i = 1), we 
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have 

E*(K,,) - tK[e] = ::E p.-l(B;) 
; 

" 
= ::E (1/1;, /{ Vt;). (6.10) 

1 

If 1r' is finer than 1r, an easy computation shows that 

where the member on the right, according to (6.10), 
equals E*(K".) - tK[e]. Therefore, the directed 
set {E*(K,,)} is nondecreasing and bounded as well, 
since 

E*(K,,) :::; iCK[e] + Tr /{) (6.12) 

[recall that Tr /{ = 1; (g", /{gn) for any complete 
orthonormal system {gn} C Xl. 

Consequently lim .. E*(K.J(:=E*(K» exists and 
is finite, Q.E.D. 

Besides, we claim that 

E*(K) = t(K[e] + Tr /{). (6.13) 

In fact, it follows from (6.10) and (6.11) that 

E*(K,,) = t(K[e] + Tr /{,,), (6.14) 

where 

/{r := Q"/{Q,,, 

Q" being the projector 
.. 

Q,,(x, y) == ::E 1/I~(x)1/I;(y). 
1 

But Q" ~" 1; since, on the other hand, given E > 0, 

'" 
Tr /{ - L (I;, /{I;) < E for m ~ m(E) 

1 

[see (6.7)], it is obvious that 

Tr g - f (};, /{"I;) < 2E 
1 

As 
on 

::E (t;, £'"/i) :::; Tr g" :::; Tr g, 
1 

it follows 

Tr /{ - Tr /{" < 2E for 1r ~ 1r(f), 

and hence 

lim Tr /{" = Tr /{, Q.E.D. 
" 

Remark 2. Suppose A is any operator in the 
trace class; the nonnegative self-adjoint operators 
A ... == H[A + A*] ± (A + A*», and A,! := 

!([i(A - A*)] ± i(A - A*», where [L] := (L*L) 1/2, 

belong7 also to the trace class and A = A+ -
A_ - i(A: - Ai), Tr A = Tr A+ - Tr A_ -
i(Tr A: - Tr Ai). Therefore, if A[p] := (p, Ap), 
then E*(A) = HA[e] + Tr A) as it follows from 
(6.13) and the linearity of E*. 

Suppose finally that ~, is a flow in (8, 1;, 1-'), 
and H the infinitesimal generator of U, (see 1). 
The functional Bu[p] is of the form (p, HBP), with 
HB in the trace class [(1.5), (1.6), and (1.7)], and 
therefore, 

E*(BH ) = t Tr H B (6.15) 

(note that BH[e] = 0). Let {B .. } be a family of 
elements of 1; such that II'B., n = 1, 2, .. , , span 
a linear manifold dense in X [its existence 1 is ensured 
by the separability of (8, 1;, 10')], and suppose that 
(8, 1;, 10', H) is not weakly mixing; then it is plain 
that H B. ~ 0 for some n, say for n no, and 
hence 

Q.E.D. 
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A new type of Coulomb gas is defined, consisting of n point charges executing Brownian motions 
under the influence of their mutual electrostatic repulsions. It is proved that this gas gives an exact 
mathematical description of the behavior of the eigenvalues of an (n X n) Hermitian matrix, when the 
elements of the matrix execute independent Brownian motions without mutual interaction. By a 
suitable choice of initial conditions, the Brownian motion leads to an ensemble of random matrices 
which is a good statistical model for the Hamiltonian of a complex system possessing approximate 
conservation laws. The development with time of the Coulomb gas represents the statistical behavior 
of the eigenvalues of a complex system as the strength of conservation-destroying interactions is 
gradually increased. A "virial theorem" is proved for the Brownian-motion gas, and various properties 
of the stationary Coulomb gas are deduced as corollaries. 

I. STATIONARY MATRIX ENSEMBLES 

T HIS introductory section recapitulates known 
facts about ensembles of matrices. Consider an 

(n X n) square matrix M whose elements are of the 
form 

i, j = 1, '" ,n. (1) 

The M;;(I are real coefficients, and the e(l (a = 0, 
1, '" , fJ - 1) are units of a certain algebra if>. 
The three possible choices for if> are: (i) if> = R, 
the algebra of real numbers, for which fJ = 1, 
eo = 1; (li) if> = C, the complex numbers, for which 
fJ = 2, eo = 1, el = i; (iii) cp = Q, the algebra of 
real quaternions, for which fJ = 4, eo = 1, el = i, 
e2 = j, ea = k. We assume that M is Hermitian, 
which means M = M D

, where MD is the matrix 
dual to M with respect to if>. The coefficients of MD 
are derived from those of M by the relations 

(2) 

M~;a = -Mila for a ¢ O. (3) 

The number of independent coefficients for a 
Hermitian M is 

N = n + !n(n - l)fJ. (4) 

It is convenient to label these independent coeffi
cients M 1" where J.' is a single index running from 
1 to N and replacing the triple index (ija). We write 

d,. = doa = 2 - fI;;. (5) 

Then 

spur M2 = L M~;(I = L d"M!. (6) 
iia JI. 

The eigenvalues of Mare n real numbers (Xl" . " x,,). 

The properties of random matrices have often 
been discussed1 on the basis of the so-called Gaussian 
ensemble Eo. Eo consists of the set of all Hermitian 
matrices M satisfying Eq. (1), with a probability 
distribution assigned as follows. The probability 
for finding each coefficient within a given small 
interval [M 1" M" + dM p] is 

P(Ml' ... ,MN) dM1 ••• dMN , (7) 

P(MI' '" ,MN) = c exp [-fJ (spur M2)j2a2], (8) 

where 0 and a are constants. In Eo, the MI' are 
independent Gaussian random variables, each having 
mean value zero and variance 

(9) 

(10) 

This ensemble has been found useful in many in
vestigations of the statistical behavior of random 
matrices of large order. 

The main theorem concerning the ensemble Eo 
is the following.2 

Theorem I. If M is chosen at random in Eo, the 
probability for finding an eigenvalue within each of 
the small intervals [Xi, Xi + dXi] is 

F(x1 , ••• ,x,,) dXI ... dx", 

F(XI' . .. ,x,,) = C[ II !x, - xd"J 
i<i 

(11) 

(12) 

1 E. P. Wigner, Proceedings of the 4th Canadian Mathematics 
Congress (Toronto University Press, Toronto, Canada, 1959), 
p. 174; C. E. Porter and N. Rosenzweig, Suomalaisen Tie
deakat. Toimituksia A VI, No. 44 (1960); Phys. Rev. 120, 
1698 (1960). 

2 A proof of this theorem for {3 = 1 is given by Porter and 
Rosenzweig (reference 1). Their argument can easily be 
extended to the cases {3 =- 2, 4. 
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where C i8 a nOrmalization Ctm8tant depending on 
a, n, and /3. 

When /3 = 1, the distribution function (12) is 
known as the Wishart distribution. a 

For any value of /3, Eq. (12) can be written 

F = C exp [-/3W] , (13) 

W(XII ••• , x .. ) = - E In lx, - Xii + ~ (x~/2a2). 
i<i i 

(14) 

The distribution (12) is identical with the proba
bility distribution of the positions of n point charges, 
free to move on the infinite line [- CD < X < CD 1 
under the influence of forces derived from the poten
tial energy (14) according to the laws of classical 
mechanics, in a state of thermodynamical equilib
rium at a temperature given by 

(15) 

This system of point charges in thermodynamical 
equilibrium is called the Coulomb gas model4 cor
responding to the ensemble E G • 

In all previous disc~ons of random matrices, 
the matrix ensembles and the Coulomb gas models 
were assumed to be stationary. No time-dependence 
of the distribution was allowed, and the velocities 
of the charges Xi played no role in the calculations 
of thermodynamic properties of the Coulomb gas. 

n. THEORY OF BROWNIAN MOTION 

The idea of the present paper is to generalize 
the notion of matrix ensemble in such a way that 
the Coulomb gas model acquires a meaning, not 
only as a static model in timeless thermodynamical 
equilibrium, but as a dynamical system which may 
be in an arbitrary nonequilibrium state changing 
with time. The word "time" in this paper will always 
refer to a fictitious time which is a property of 
the mathematical model and has nothing to do with 
real physical time. 

When one tries to interpret the Coulomb gas as 
a dynamical system, one naturally thinks of it first 
as an ordinary conservative system in which the 
charges move as Newtonian particles and exchange 
energy with one another only through the electric 
forces arising from the potential (14). One has then 
to give a meaning to the velocity of each particle, 
and to regulate the behavior of the matrix M in 

a J. Wishart, Biometrika. 20,32 (1928). 
• F. J. Dyson, J. Math. Phys. 3, 140 (1962). 

such a way that the eigenvalUes Xi possess the 
normal Newtonian property of inertia. There does 
not seem to be any reasonable way of doing this. 
The program of interpreting the Coulomb gas as a 
conservative Newtonian system has therefore failed. 

Mter considerable and fruitless efforts to develop 
a Newtonian theory of ensembles, we discovered 
that the correct procedure is quite different and 
much simpler. The Xi should be interpreted as 
positions of particles in Brownian motion.s This 
means that the particles do not have well-defined 
velocities, nor do they possess inertia. Instead, 
they feel frictional forces resisting their motion. 
The gas is not a conservative system, since it is 
constantly exchanging energy with its surroundings 
through these frictional forces. The potential (14) 
stilI operates on the particles in the following way. 
The particle at Xi feels an external electric force 

aw ~ [ 1 ] Xi E(x.) = -- = ~ - -"2 , 
I aXj i.-i Xj - Xi a 

(16) 

in addition to the local frictional force and the 
constantly fluctuating forces which give rise to the 
Brownian motion. 

A precise description of the Brownian motion of 
the Coulomb gas is the following.' Let the positions 
of the particles be [Xl> •• , , x,,] at time t. Then the 
positions at time (t + at) are [Xl + aXh' • " X .. + ax .. 1. 
where the ax; are random variables. To the first 
order in the small quantity ot, the variables OX; 

are independent and have first and second moments 
given by 

/{OXj) = E(x;) ot, 

/«OXi?) = 2kT ot, 

(17) 

(18) 

all higher moments being zero to this order. The 
constant f is the friction coefficient which fixes the 
rate of diffusion, E(xi) is the external force (16), 
and kT is the temperature in energy units. 

An equivalent description of the motion is ob
tained by considering the time-dependent proba
bility density F(xlJ ... ,X .. j t) for finding the particles 
at the positions Xi at time t. In consequence" of Eqs. 
(17) and (18), F satisfies the Smoluchowski equation 

i A convenient summary of the theory of Brownil1!1 motion 
is contained in G. E. UhIenbeck and L. S. Ornstem, Phys. 
Rev. 36, 823 (1930), and in M. C. Wa.ng and G. E. UhIenbeck, 
Revs. Modern Phys. 17, 323 (1945). These .two papers are 
reprinted in Noise and Sf«hastic Pr0ceB8lU1, edited by N. WaJt 
(Dover Publica.tions, New York, 1954). 

a See Wang and Uhlenbeck, reference 5, Sec. 8. 
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aF [a2F a ] f -;-t = L kT!i2 - !I (E(x;)F) . 
" ; "X; "X; 

(19) 

Equation (19) describes the development with time 
of the Coulomb gas. Starting from an arbitrary 
initial probability distribution F at t = to, a unique 
solution of Eq. (19) will exist for all t > to. Any 
such solution we will call a time-dependent Coulomb 
gas model. 

It is easy to verify that Eq. (19) implies Eqs. (17) 
and (18), so that the descriptions of the motion by 
Eqs. (17) and (18) and by Eq. (19) are equivalent. 
Also, there exists a unique solution of Eq. (19) which 
is independent of time, and this time-independent 
solution is given by Eqs. (13) and (14). So the 
stationary Coulomb gas is a special case of the more 
general time-dependent model. 

A Brownian-motion model can also be constructed 
for the matrix M of which the Xi are the eigenvalues. 
Suppose that the coefficients of the matrix have the 
values [MIt ... , MNJ at time t, and the values 
[M) + 8Mlt ••• , MN + 8MNJ at time (t + 8t). 
A Brownian motion of M is defined by requiring 
that each 8M" is a random variable with the mo
ments 

!(8M,,) = -[M,,/a2
] ot, (20) 

f«oM,Y> = g"kT 8t, (21) 

with g~ defined by Eq. (10). This is a Brownian 
motion of the simplest type, the various components 
M" being completely uncoupled, and each being 
subject only to a fixed simple harmonic force. The 
Smoluchowski equation corresponding to Eqs. (20) 
and (21) is 

ap [1 a2p 1 a ] 
f iii = ~ 2 g~kT aM! + a2 aM" (M"P) , (22) 

where P(M), '" , MN; t) is the time-dependent 
probability density of the M". The solution of Eq. 
(22) corresponding to a given initial condition 
M = M' at t = 0 is known explicitly.7 It is 

P(M; t) = c[1 - q2rNI2 

X exp {-spur (M - qM'? /[2a2kT(1 - q2)]}, (23) 

q = exp [-t/a2f]. (24) 

The solution shows that the Brownian process is 
invariant under symmetry-preserving unitary trans
formations of the matrix M; in fact the awkward
looking factor g" in Eq. (21) is put in just in order 
to assure this invariance. When t -+ co, q ~ 0, 

7 Except for a misprint, this is Eq. (15) of Ublenbeck and 
Ornstein (reference 5). 

and the distribution (23) tends to the stationary 
form (8), which is the unique time-independent 
solution of Eq. (22). 

We are now ready to state our main result. 
Theorem II. When the matrix M executes a Brown

ian motion according to the simple harmonic law (20), 
(21), startt'ng from any initial condition whatever, 
its eigenvalues (x)' ... , Xn) execute a Brownian 
motion obeying the equations of motion (17), (18), (19) 
of the time-dependent Coulomb gas. 

Note that the temperature kT is still related to 
the basic algebra <I> by Eq. (15). 

To prove the theorem, we need only show that 
Eqs. (17) and (18) follow from Eqs. (20) and (21). 
Suppose then that Eqs. (20) and (21) hold. We 
have seen that the process described by Eqs. (20) 
and (21) is independent of the representation of M. 
Therefore we may choose the representation so that 
M is diagonal at the time t. The instantaneous 
values of the M OJ,, at time t are then 

Mi;o = Xi' j = 1, .. , ,n, (25) 

with all other components zero. At the later time 
(t + 8t), the matrix (M + 8M) is no longer diagonal, 
and its eigenvalues (x; + ox;) must be calculated 
by perturbation theory. We have, to second order 
in oM, 

H (OMii"i 
OXi = 8M;;0 + L L ( _ ). (26) 

i"i a-O Xj Xi 

Higher terms in the perturbation series will give 
no contribution to first order in ot. When we take 
the expectation value on each side of Eq. (26), 
using Eqs. (20), (21), (15), and (16), the result 
is Eq. (17). When we take the expectation value 
of (OX;)2, only the first term on the right of Eq. (26) 
contributes to order ot, and this term gives Eq. (18) 
by virtue of Eq. (21). The theorem is thus proved. 

The proof of Theorem II incidentally provides 
a new proof of the old Theorem 1. The new proof 
is simpler than the standard proof2 of Theorem I, 
and is in some respects more illuminating. The new 
proof shows how the repUlsive Coulomb potential 
(14), pushing apart each pair of eigenvalues, arises 
directly from the perturbation formula (26). It has 
long been known that perturbations generally split 
levels which are degenerate in an unperturbed 
system. We now see that this splitting effect of 
perturbations is quantitatively identical with the 
repulsive force of the Coulomb gas model. 

Theorem II is a much stronger statement than 
Theorem I. It shows that the electric force (16) 
acting upon the eigenvalue X; has a concrete meaning 
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for any matrix M whatever, not only for an ensemble 
of matrices in stationary thermal equilibrium. The 
force E(x;) is precisely proportional to the mean 
rate of drift of X; which occurs when the matrix M 
is subjected to a random perturbation. 

In. UNITARY BROWNIAN MOTION MODEL 

In Sec. II we constructed a Brownian motion 
model for a random Hermitian matrix. We now 
construct a similar model for a random matrix U 
which is unitary and self-dual with respect to CP. 
Such a matrix has elements of the form 

/1-1 

Uii = L Uj;aea, 
a-O 

i, j = 1, ... ,n, (27) 

where the U,;a are now complex coefficients but 
still satisfy the same symmetry condition U = UD. 
The eigenvalues of U are n complex numbers 
[exp (iO;)], j = 1, ... ,n, all lying on the unit circle. 

An isotropic and representation-independent 
Brownian motion of U is defined in the following 
way. Every unitary self-dual U can be represented 
in the form 

U = VVD
, (28) 

with V unitary. A permissible small change in U 
is then given by 

(29) 

where 8M is an infinitesimal Hermitian self-dual 
matrix. Suppose that U satisfies Eq. (28) at the 
time t. We assume that U moves by Brownian motion 
to the position (U + 8U) at time (t + 8t), where 
8U is given by Eq. (29), and the matrix 8M has 
real coefficients 8MI' which are independent random 
variables with the moments 

(8MI') = 0, 

f«8M,,)2) = gl'kT M. 

(30) 

(31) 

This Brownian motion of U is a pure diffusion 
without any restoring force, since the harmonic 
force term which appeared in Eq. (20) has been 
omitted from Eq. (30). The rate of diffusion given 
by Eq. (21) remains the same as before. 

The process of diffusion will spread the probability 
distribution of U more and more evenly as time 
goes on. The unique time-independent configuration 
for U is one in which the probability density is 
constant (in the sense of invariant group measures) 
over the whole space of unitary self-dual matrices. 

This uniform distribution of U is the stationary 
ensemble EfJ defined in an earlier paper.' 

Now we consider the effect of the Brownian motion 
of U on the eigenvalues [exp (iO;)]. We may use a 
representation in which U is diagonal at time t. 
The perturbation-theory formula analogous to Eq. 
(26) is then 

fJ-l 

00; = oM;;o + L L {(oM;;«)2! cot [!CO; - O,)]). 
i.,ti a-O 

(32) 

Equations (30) and (31) then imply that the angles 
0; execute a Brownian motion with 

f(oO;} = E(O;) ot, 

f«80;)2) = 2kT 8t, 

(33) 

(34) 

E(O;) = L! cot [!(O; - 0.)]. (35) 
ipl; 

This force E(O;) is exactly the component, tangential 
to the circle, of the electric field produced at exp (iO;) 
by unit charges at all the other points exp (iO.) 
at which U has eigenvalues. Thus 

E(O;) = -(aw/ao;) , 

W = - LIn lexp (iO,) - exp (iO;) I. 
i<i 

(36) 

(37) 

So the eigenvalue angles 0; behave like a gas of n 
unit charges on the unit circle, executing Brownian 
motions with repulsive Coulomb forces derived from 
the potential (37). Every free diffusion of the matrix 
U gives rise to a corresponding Brownian motion 
of the Coulomb gas formed by its eigenvalues on the 
unit circle. 

In partiCUlar, the uniform probability distribution 
of U corresponds to the unique stationary probability 
density, 

F( 01 , ••• , On) = c exp [-.aW] 

= c II lexp (iO.) - exp (iO;) /11, (38) 
j<i 

for the eigenvalue angles. This is again a new and 
simple proof of an old result.' 

IV. APPLICATION TO SYSTEMS WITH 
SEMI-CONSERVED QUANTUM NUMBERS 

The stationary random-matrix models which have 
been studied in the past have always had an all-or
nothing character. That is to say, they represented 
situations in which a certain set of quantities (for 
example, total spin, charge, or isotopic spin) was 
exactly conserved, while no other integral of the 
motion existed even approximately. The total set 
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of states of the system could then be divided into 
subsets, each subset corresponding to a particular 
set of values for the conserved quantities. The 
energy levels of states belonging to different subsets 
would be completely uncorrelated, while the level 
distributions within each subset would be described 
by a separate random-matrix model. 

The time-dependent Brownian motion models 
discussed in Sec. II provide a basis for a statistical 
theory of energy levels in systems possessing ap
proximate conservation laws. Such systems occur 
in practice more frequently than those of the all-or
nothing type. For example, in complex atomic 
spectra it is usually the case that either an LS or 
a J J coupling scheme is approximately valid, so 
that it is incorrect to treat all matrix elements of 
the Hamiltonian as having the same a priori proba
bility distribution. We will now illustrate with a 
simple model how such situations can be quantita
tively described in terms of the Brownian-motion 
picture. 

Suppose that a system has an approximately con
served two-valued quantum number g, taking the 
values 1 and 2. Suppose that the manifolds of 
quantum states with g = 1, 2 have dimensions 
nl, n2 , respectively. We write the Hamiltonian H 
in a representation with g diagonal. Then H splits 
into four blocks 

(39) 

For simplicity we suppose that we are in the case 
~ = R, {3 = 1 of Sec. I, so that the matrix H is 
real and symmetric. A reasonable statistical hy
pothesis for the elements of H is then the following. 
Each element is an independent random variable, 
having a Gaussian distribution with mean value 
zero and variance given by 

«Hn .;;?> = !(l + o;;)a2~, (40) 

«H22 .• ;?> = !(l + Oii)a2
11 , (41) 

«HI2 .;;)2) = !a2
E. (42) 

The parameter E measures the ratio between the 
strengths of non-g-conserving and g-conserving inter
actions. It is convenient to choose ~ and 11 given by 

~ = 1 + [nd(l + nl)](l - E), (43) 

11 = 1 + [nI/(l + n2)](1 - E). (44) 

Then Eqs. (40) to (42), with E = 1, describe the 
situation in which g is completely unconserved; the 
probability distribution of H is then identical with 

the stationary ensemble Eo in which all the ele
ments of H are treated alike. When E = 0, Eqs. (40) 
to (42) describe two independent Gaussian en
sembles E o1 , E 02 , referring to the states with g = 1 
and fI = 2 separately; this is the case of exact g 
conservation. The advantage of the choice (43) and 
(44) for t and 11 is that it makes the variance of 
any eigenvalue 

(x;) = ia2(nl + n2 + 1) (45) 

independent of E and the same for EOh E02 , Eo. 
Thus the over-all spread of the eigenvalue distri
butions does not vary as the parameter E is changed. 

We denote by E(e) the ensemble of matrices H 
whose elements are Gaussian variables satisfying 
Eqs. (40) to (44). It is easy to verify by referring 
to Eqs. (23) and (24) that E(E) is identical with 
the time-dependent Brownian motion model defined 
by Eqs. (20) and (21), provided we choose 

kT = 1, E = 1 - q2 = 1 - exp [-2t/a2f]. (46) 

The initial condition at t = E = 0 is 

E(O) = EOI X E 02 , 

while in the limit t ~ IX> we have 

E(E) ~ E(l) = Eo. 

(47) 

(48) 

The distribution of eigenvalues for a matrix in 
E(E) is determined by Theorem II. We have thus 
proved 

Theorem III. Let H be a matrix ohosen at random 
in the ensemble E(E). Its eigenvalues (XIJ '" I xn) 
are then distributed according to the time-dependent 
Coulomb gas model defined by Eq. (19), taken at the 
time 

(49) 

the initial condition at t = 0 being a superposition of 
two unoorrelated 8tationary Coulomb gases containing 
nl and n2 oharges, respectively. 

The statistical distribution of eigenvalues of a 
system with an approximate conservation law is 
thus determined in principle. The eigenvalue distri
bution is the solution of the Smoluchowski equation 
(19) with the initial condition that F should be at 
t = 0 a product of two Wishart distributions. This 
solution has a very simple physical interpretation. 
The situation with exact g conservation is repre
sented by two superposed noninteracting stationary 
Coulomb gases. At the instant t = 0 a repulsive 
Coulomb interaction between the charges in one 
gas and those in the other is suddenly switched 
on. The resulting nonstationary Coulomb gas is 
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allowed to adjust itself to the sudden change in 
the forces by Brownian motion for a time given 
by Eq. (49). At the end of this time the gas will 
represent the eigenvalue distribution for the situa
tion with partial g conservation. 

It is an interesting and deep mathematical problem 
to describe accurately the approach of the Coulomb 
gas to equilibrium as t or E increases. Since we were 
careful to choose the parameters ~ and '1 to make 
the over-all shape of the charge distribution inde
pendent of t, the approach to equilibrium involves 
only local adjustments. We make the conjecture 
that the approach to equilibrium proceeds ex
ponentially with a time scale which is of the order of 

T = US/E), (50) 

where S is an average level-spacing and E an average 
Coulomb force between nearest-neighbor charges. 
This T is the time taken for a single level to respond 
to the changed interaction between itself and its 
neighbors. In the ensemble Eo, Eq. (45) gives 

S ~ a(nl + n2) -1/2 , 

and therefore 

E ~ S-I, (51) 

(52) 

Comparing this with Eq. (49), we see that the 
eigenvalues already approach their final distribution 
when E is of the order 

(53) 

So for matrices whose order n = n 1 + n2 is large, 
the g-violating matrix elements H 12 ,iI need only 
to be of the order of (n- I/Z

) times the g-conserving 
elements in order to bring the eigenvalue distribution 
close to the state of complete g-nonconservation. 
In random matrices of large order, a conservation 
law must be almost exact in order to produce a 
noticeable effect on eigenvalue distributions. 

A different type of system with partially conserved 
quantum numbers can arise in the following way. 
Suppose that there are two almost-conserved quanti
ties g, g' which do not commute with each other. 
Suppose that g takes the values 1, 2, while g' has 
matrix elements linking states with g = 1 to states 
with g = 2. A familiar example of such a situation 
occurs when g and g' are two different components 
of angular momentum. The Hamiltonian H again 
splits into four blocks as in Eq. (39). However, the 
states of the system must now become degenerate 
in pairs in the limit of exact g and g' conservation. 
A reasonable statistical hypothesis for H is that its 
elements are independent Gaussian variables satisfy-

ing the Brownian motion conditions (20) and (21), 
but now starting from the initial condition 

H = [:' ;,] 
(54) 

at t = 0, with H' distributed according to the 
Gaussian ensemble E ol• In this case we must have 
n l = na = In. The distribution of eigenvalues in 
the system with partial g and g' conservation will 
be obtained from the time-dependent Coulomb gas 
as before, but now the initial condition has the 
positions of the charges coinciding in pairs. Instead 
of two noninteracting Coulomb gases, we have in 
the initial state a single Coulomb gas of in charges, 
each charge being suddenly replaced by two inde
pendently moving charges at the instant when the 
Brownian motion begins. The approach to equilib
rium should again occur in a time of the order of 
Eq. (52). 

Many other statistical ensembles, describing 
random matrices with approximate conservation 
laws, could be constructed from the time-clependent 
Brownian motion model with suitable initial con
ditions. In some cases it will be appropriate to use 
ense~bles with {3 = 2 or 4 instead of (3 = 1, de
pending on the type of group representation which 
the symmetry of the problem requires.8 We will 
not attempt here any systematic discussion of the 
possible alternatives. The two simple examples which 
we described above show well enough the general 
principles to be followed. 

V. PROPERTIES OF THE BROWNIAN MOTION MODEL 

In studying the approach to equilibrium of the 
time-dependent Coulomb gas defined by Eqs. (16) 
to (18), we have derived a few general properties 
of the gas which may be worthy of record. Let 
G = G(Xl' ..• , x .. ) be any function of the positions 
of the charges, not depending explicitly on time. 
Then (G), the ensemble average of G, varies with 
time according to the equation 

f E.. (G) = -2: (aw ad\ + kT 2: <a2~) (55) 
dt ; ax; aX"/ ; ax;' 

withW given by Eq. (14). 
Take in this equation 

R = L(x:} 
~ 

for (G). The equation becomes 

!a2fR = R", - R, 

(56) 

(57) 

8 F.J. Dyson, J. Math. Phys. 3, 1199 (1962), following paper. 
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with 

(58) 

EquatiDn (57) has the solutiDn 

R = Roq2 + R ... (I - q~, (59) 

where q is given by Eq. (24) and Ro is the value 
Df R at t = O. EquatiDn (59) ShDWS rigDrDusly that 
at least the ensemble average R apprDaches its 
equilibrium value Roo with expDnential speed as 
t --+ (Xl. 

Next take G = Win Eq. (55). After SDme algebra 
we find 

f(d(W)/dt) = (kT - 1) L «x; - X.)-2) 
,,Ai 

FDr the statiDnary CDulDmb gas at temperature T, 
the left side Df Eq. (60) vanishes, and Eq. (58) 
may be used Dn the right. We thus find a "virial 
theDrem" fDr the statiDnary gas, 

The prDbability density Df eigenvalues beCDmes prD
pDrtiDnal to' Ix; - x;\~ when twO' eigenvalues (x" Xi) 
cDme clDse tQgether. The ensemble average Qf 
(Xi - X.)-2 is therefQre defined Dnly fQr {3 > 1, 
and Eqs. (60), (61) hQld Qnly fDr kT < 1. 

We are especially interested in the case kT = I, 
which requires a passage to' the limit in Eq. (60). 
As kT --+ I, we have fDr any fixed value Df A 

lim (kT - I) i: lyl~-2 dy 

= lim (kT - 1)(,8 - 1)-12A~-1 = -2. (62) 

We Qbtain the CDrrect limit in Eq. (60) if we replace 

(kT - I) (Xi - X,)-2 

by 

which has a well-defined meaning as an ensemble 
average when kT = I, since the prDbability density 
then cQntains a factQr Ix; - x.l. EquatiQn (60) 
thus becDmes, in the limit, 

l(d(W)/dt) = -2 L (Ix; - X.j-l J(x; - x.» 
''''i 

+ n2a-2 
- L <x~)a-', 

; 
kT = 1. 

The cDrresPQnding "virial theDrem" is 

(64) 

fQr the statiQnary gas. 

kT = I, 

(65) 

EquatiQn (64) suggests very fDrcibly the fQllQwing 
picture Df the apprDach Df the gas to' equilibrium. 
The first term Dn the right is a "cDllisiDn term" 
measuring the frequency with which twO' charges 
CDme intO' cDincidence. This term is mainly sensitive 
to the IDcal (micrDscDpic) cDnfiguratiDn of the gas 
particles. By means Qf this term the gas will CDme 
intO' IDcal thermDdynamic equilibrium in a micro
sCDpic time scale 

(66) 

After IDeal equilibrium is established, the gas will 
still nQt be in a statiDnary state, because the third 
term Dn the right Df Eq. (64) will nDt in general 
have its statiDnary value. The gas must adjust 
itself by macrDscDpic mQtiDn Dn the time scale 

(67) 

until the Dver-all charge distributiDn reaches its 
statiDnary shape. 

We chQse the parameters ~ and 77 in Eqs. (40) 
to (42) so that the CQulDmb gas representing the 
eigenvalues Qf a system with semicDnserved quan
tum numbers shQuld have the statiDnary macrD
sCDpic shape frDm the beginning. In this case the 
entire prDcess Df reaching eqUilibrium shDuld DCCur 
with the micrDscDpic time scale (52). 

Of CQurse the picture Df the gas CDming intO' 
equilibrium in twO' well-separated stages, with micrQ
SCQpic and macrQscDpic time scales, is Dnly suggested 
by Eq. (64) with the help Df physical intuitiDn. A 
rigDrDus prDDf that this picture is accurate WQuid 
require a much deeper mathematical analysis. 

The equatiDns Df this sectiQn all have analDgs fQr 
the time-<iependent CDulDmb gas Dn the unit circle, 
with the BrDwnian mDtiDns defined by Eqs. (33) 
to' (35). The PQtential energy W is nQW given by 
Eq. (37). The macroscDpic mass center Df the gas is 

R = n-1 L (exp (i9k», (68) 
k 

and the analDg Df Eq. (57) is 

IR = -[!(n - I) + kTJR. (69) 

The analQgs to' Eqs. (60) and (64) are9 

'Here use is made of the identity 
cot a cot b + cot b cot c + cot c cot a = 1, 

which holds when a + b + c = o. 
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f(d(W)/dt) = T~ (n3 
- n) + (kT - 1) E 

'r'i 

X (/exp (i8;) - exp (i8.) 1-2
), kT < 1, (70) 

!(d(W)/dt) = Ti (nS 
- n) - 2 E 

i"si 

kT = 1. (71) 

These give virial theorems analogous to Eqs. (61) 
and (65). We state the results only for the limiting 
case n - 0) which is most important in practice. 

Let Xi. (- 0) < j < + 0», be the positions 
of charges in an infinite Coulomb gas in thermo
dynamic equilibrium at temperature T. Let D be 
the mean spacing between nearest neighbors. The 
virial theorems are 

2 

L (Ix; - xol- I ~(Xi - xo» = 6
7r
D2' kT = 1. (73) 

i,..O 

Equation (73) is a known result, giving the slope 
of the level-spacing distribution function at zero 
spacing. lo The above derivation of it seems to be 
the simplest yet found. 
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Using mathematical tools developed by Hermann Weyl, the Wigner cla.eeification of group-repre
sentations and co-representations is clarified and extended. The three types of representation, and 
the three types of co-representation, are shown to be directly related to the three types of division 
algebra with real coefficients, namely, the real numbers, complex numbers, and quaternionB. The 
author's theory of matrix ensembles, in which again three poeeible types were found, is shown to be in 
exact correspondence with the Wigner cla.eeification of co-representations. In particular, it is proved 
that the moot general kind of matrix ensemble, defined with a symmetry group which may be com
pletely arbitrary, reduces to a direct product of independent irreducible ensembles each of which 
belongs to one of the three known types. 

I. INTRODUCTION 

THE purpose of this paper is to bring together 
and' unify three trends of thought which have 

grown up independently during the last thirty years. 
These are (i) the classification by Wigner1 of repre
sentations of groups which include time-inversion, 
(ii) Weyl's general theory of matric algebras and 
their commutator algebras/ and (iii) the study of 
ensembles of random matrices, begun by Wigner3 

and continued by various other physicists.4 It will 
be shown that these three theories are all variations 
upon a single mathematical theme. It is not sur
prising that the three theories should turn out to 
be closely related, since they all took their origin 
from the work of the great algebraists Frobenius 
and Schur at the beginning of the twentieth century.6 

Our way is threefold in another and deeper sense. 

1 E. P. Wigner, Nachr. Akad. Wiss. Gottingen, Math. 
physik. ID., 546 (1932). See also, E. P. Wigner, Group Theory 
and its Application to the Quantum Mechanics of Atomic 
Spectra (Academic PreBS Inc., New York, 1959), English 
edition, Chaps 24 and 26. 

2 H. Weyl, The Classical Groups, Their Invariants and 
Representations (Princeton University Press, Princeton, New 
Jersey, 1939). Chapter 3 of this book contains the essential 
theorems on which all of our arguments hang. For Weyl's 
treatment of semilinear representations, see Duke Math. J. 3, 
200 (1937). 

3 E. P. Wigner, Ann. Math. 53, 36 (1951); 62, 548 (1955); 
65, 203 (1957); 67, 325 (1958). 

4 F. J. Dyson, J. Math. Phys. 3, 140, 157, and 166 (1962). 
This series of three papers includes references to earlier work 
by others in the same field. Paper IV in the series is being 
written in collaboration with Dr. M. L. Mehta and will be 
published later. The present paper should logically be con
sidered to be number zero in the series, since it provides an 
improved mathematical and logical foundation for the rest of 
the series. Since Roman numerals contain no symbol for zero, 
we preferred to publish the present paper under a separate 
title. 

Ii A sketch of the historical development is to be found in 
the section headed "Remembrance of Things Pa.et" in Weyl's 
book (reference 2), p. 27. 

In each of the three theories which we aim to unify, 
there appears a triple alternative, a choice between 
three mutually exclusive possibilities. (i) The ir
reducible representations of a group by unitary 
matrices fall into three classes, which are called 
potentially real, complex, and pseudoreal. 6 Another, 
and quite independent, threefold choice exists for 
representations of a group by unitary and anti
unitary matrices. Wigner7 calls such representations 
co-representations, and he classifies them into 
types I, II, and III. (ii) The classical groups studied 
by Weyl are of three types, namely orthogonal, 
unitary, and symplectic. (iii) The present author4 

found three distinct kinds of ensembles of random 
matrices, to which he attached the same three names 
as are given to the classical groups. In the previous 
discussion of matrix ensembles,4 the question whether 
all irreducible ensembles belong to one of these three 
types was not raised. This question will here be 
answered in the affirmative. 

The recurrence of the threefold choice in all these 
contexts gave the first hint that a unified mathe
matical treatment of group representations, com
mutator algebras, and ensembles should be possible. 
It was Bargmann who pointed out to the authorS 
that the root of the matter is to be found in the 
classical theorem of Frobenius. 9 

Frobeniua' Theorem. Over the real number field 

6 Chapter 24 of Wigner's book (reference 1). This claSBm
cation was discovered by A. Loewy, Trans. Am. Math. Soc. 4 
171 (1903). See also G. Frobenius and I. Schur, Sitzber: 
preuss. Akad. Wiss., Physik.-math. Kl. 186 (1906). 

7 Chapter 26 of Wigner's book (reference 1). 
8 V. Bargmann (private communication). 
9 G. Frobenius, J. reine u. angew. Math. 84, 59 (1878)· 

L. E. Dickson, Linear Algebras (Cambridge University PreBS; 
New York, 1914), p. 10. 
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there exist precisely three associative10 division alge
bras, namely the real numbers, the complex numbers, 
and the real quaternions. 

Once this is understood, the further development 
of the theory is extremely simple. All that is neces
sary is to apply the general theorems of Weyl' to 
the special case in which the ground field of the 
matric s.lgebras is the field of res.l numbers. 

Probs.bly all these connections would have been 
clarified long ago, if quantum physicists had not 
been hampered by a prejudice in favor of complex 
and s.gs.inst real numbers. It hs.s been generally 
believed that only the complex numbers could 
legitimately be used as the ground field in discussing 
quantum-mechanical operators. Over the complex 
field, Frobenius' theorem is of course not valid; 
the only division algebra over the complex field is 
formed by the complex numbers themselves. How
ever, Frobenius' theorem is relevant precisely be
Cs.use the appropriate ground field for much of 
quantum mechanics is real rather than complex. 
Specifically, as soon as anti-unitary opers.tors such 
as time inversion are included, it is simpler and 
more natural to work with a real ground field than 
to follow Weyl2 in studying semilinear operators 
over the complex field. 

Physicists have known for a long time that in 
practice, when invariance under time-inversion is 
in question, complex phases are no longer arbitrary 
s.nd undetermined coefficients may be taken to be 
real. Physicists are, in fs.ct, like M. Jourdain talking 
prose, using the real numbers for their ground field 
without knowing it. One purpose of this paper is 
to make the use of the real ground field in quantum 
mechanics official and undisguised.ll No change in 
the physical content of the theory is thereby im
plied. Only it may be es.sier for students to under
stand what they are doing if the mathematical 

10 The restriction to associative a4ebras is forced by the 
fact that the rule of matrix multiplicatIOn is associative. In all 
applications of group theory to quantum mechanics we 
identify the operation of multiplication with ordinary matrix 
multiplication. It is well-known that a fourth division algebra 
over the real number field exists, namely the algebra of 
octonions, if multiplication is allowed to be nonassociative. 
It is interesting to speculate uponlOBBible physical interpre
tations of the octonion al~ebra [see . Pais, Phys. Rev. Letters 
7, 291, 1961]. We have tried, and failed, to find a natural way 
to fit octonions into the mathematical framework developed 
in this paper. 

11 The general formalism of quantum mechanics over a 
real ground field has been worked out by E. C. G. Stueckel
berg, Helv. Phys. Acta 32, 254 (1959); 33, 727 (1960). Two 
further papers by Stueckelberg and collaborators have been 
circulated as preprints and will appear in Helv. Phys. Acta. 
These papers have many points of contact with the present 
work. For a brief summary of Stueckelberg's conclusions, see 
also the paper of Finkelstein et al. (reference 12). 

formalism is brought into closer correspondence with 
physical pmctice. 

A final by-product of the work described in this 
paper is that it defines an area of quantum mechanics 
within which quaternions play a natural and es
sential role. Several attempts have been made in the 
past12 to construct a radically new version of quan
tum mechanics in which complex numbers are from 
the beginning replaced by quaternions. Our analysis 
has nothing to do with these attempts. Proceeding 
in a modest and conservative spirit, we merely 
show that quaternions form the appropriate alge
braic basis for a description of nature whenever 
we have to deal either with pseudoreal group 
representations or with co-representations of Wig
ner's type II. The context in which quaternions 
arose historically, in a study of the three-dimen
sional rotation group, can now be seen to be an 
extremely special case of this general principle. 
Every group which admits pseudoreal representa
tions equally admits a natural description in terms 
of real quaternions. 

U. GROUP ALGEBRA AND COMMUTATOR ALGEBRA 

The starting point of our analysis is a group G 
which is supposed to be a symmetry-group for some 
quantum-mechanical system. For example, G could 
be a rotation group, or an isotopic-spin group, or 
a time-inversion group, or all of these in combina
tion. The quantum-mechanical states belong to a 
linear vector space H. of finite dimension n over 
the field C of complex numbers. An element g of 
G is represented in H. by an operator A(g) which 
is either unitary or antiunitary. Physically, the 
antiunitary A(g) will correspond to operations g 
which involve time-inversion. We make the con
vention that the letter g may denote any element of 
G, the letter u denotes an element for which A(u) 
is unitary, and the letter a denotes an element for 
which A(a) is antiunitary. The set of u forms a 
subgroup G1 of G. We assume that G contains some 
antiunitary elements a. Then G1 is an invariant 
subgroup of G with index 2. The a form a set G, 
which is the unique co-set of G1 in G. 

The A(a) are not matrices over the field of com
plex numbers. The notion of group representation 
can be enlarged, following Weyl2 and Wigner,7 so 
as to include such semilinear operations. However, 
we find it simpler and more fruitful to represent 

12 G. BirkhofJ and J. von Neumann, Ann. Math. 37, 823 
(1936). E. J. Schremp, Phys. Rev. 99, 1603 (1955); 113, 936 
(1959). D. Finkelstein, J. M. Jauch, S. Schiminovich, and D. 
Speiser, J. Math. Phys. 3, 207 (1962). 
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the A(a) by true matrices over the field R of real 
numbers. We define the correspondence 

A(g) +-+ M(g) (1) 

in the following way. M(g) is a [2n X 2n] matrix 
with real elements. Each (2 X 2) block in M (u) 
is derived from a single element of the [n X n] 
complex matrix A(u) by the replacement 

a matric algebra over R. In particular we define 

X = commutator algebra of A, (11) 

Y = commutator algebra of B, 

Z = commutator algebra of D. 

The inclusion relations 

ACBCD 

(12) 

(13) 

(14) 

fa -~l. 
a + i~ +-+ lp J (2) immediately imply 

Each A(a) is of the form 

A(a) = U(a)j, (3) 

where U(a) is unitary and j is the operation of 
complex conjugation. The M(a) are defined by 
making the substitution (2) in U(a) together with 
the replacement 

j = I .. X [1 OJ. ° -1 

(4) 

The space H R in which the matrices M(g) operate 
is a real 2n-dimensional vector space. Each vector 
in H B is composed of the real and imaginary parts 
of the components of the corresponding vector in H c' 

It is convenient to consider the symbol 

(5) 

also as a matrix operating in HR' 
The M (g) now form a true 2n-dimensional repre

sentation of the group G over the field R. The dis
tinction between unitary and antiunitary elements 
of G is provided by the commutation rules 

M(u)i = iM(u) J 

M(a)i = -W(a). 

All the M (g) are orthogonal matrices. 

(6) 

(7) 

X:) Y:) Z. (15) 

The algebra A is given the name "group algebra 
of Glover R." In an obvious sense, B is identical 
with the group algebra of Glover O. The algebra 
D is not a group algebra over 0 in the ordinary 
sense, but it may be considered to be the group 
algebra of Gover O. However, it is important that 
we have defined each of A, B, D as algebras with 
coefficients in R. 

We next introduce some convenient notations; 
following Weyl.2 If K is any algebra and m a positive 
integer, we denote by mK the algebra of matrices 
consisting of m identical blocks, 

MOO 

o M 0 

o ... M 

(16) 

with MinK. Symbolically, we may write this as 
an outer product, 

mK = I", X K. (17) 

We denote by [Kl ... the algebra of all matrices con
sisting of m2 blocks, 

(18) 

.. 1 M .. , M .. 

A matric algebra over R is defined as a set of 
matrices which is closed under the three operations 
of addition, matrix multiplication, and multiplica
tion by scalar coefficients in R. Three such algebras 
will now be introduced: 

A generated by the M(u), 

with each M" independently a matrix in K. In 
particular, when K = R is the algebra of scalars, 

(8) R", is the algebra of all real matrices of degree m. 
Two algebras A, A' are said to be equivalent 

(A ,...., A') if there exists a fixed nonsinguIar matrix 
N such that every matrix M of A is related to the 
corresponding M' in A' by 

B generated by the M(u) and i, (9) 

D generated by the M(u), M(a), and i. (10) 

The commutator algebra of a given algebra K is 
defined as the set of matrices which commute with 
all matrices in K. The commutator algebra is itself 

M = NM'N-1
• (19) 

If A is any algebra, the inverse algebra A is obtained 
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from A by inverting the order of factors in all 
products, thus 

(20) 

if and only if 

(21) 

Finally, a division algebra is defined to be an algebra 
in which every nonzero element M has a reciprocal 
M-1• 

With these notations and definitions, we are in a 
position to state the main theorem of Weyl.13 

Weyl's Theorem. Let K be any group algebra over 
R, and L its oommutator algebra. Then K and L 
are simultaneously equivalent to the canonioal forms 

K rv L s;[E;]'iI 
; 

L rv L t;[.E;]'f' 
; 

(22) 

The summations here represent direot sums over 
diagonal blooks of matrioes. Each value of j corre
sponds to one inequivalent irreducible representation 
of the group r whioh generates Kover R. For each j, 
E; is a division algebra, and s;, t; are positive integers. 
The matrix block corresponding to index j has degree 

(23) 

where e; is the degree of E;. 
The following remarks may be made concerning 

this theorem. 
Remark 1. The relation between the algebras K 

and L is symmetrical. Thus K is also the commutator 
algebra of L. 

Remark 2. When the sums (22) reduce to a single 
term, the algebras K and L are called simple. In 
this case the suffixes j may be dropped. 

Remark 3. When K is generated by an irreducible 
representation of r, K is simple and the integer-s 
is equal to unity. In this case 

K rv E
" 

L '" tEo (24) 

Remark 4. By Frobenius' theorem (see Sec. I), 
the possible division algebras over R are three in 
number, and are denoted by R, C, and Q. R has 
degree 1, and is generated by the scalar Ii = 1. 
C has degree 2 and is generated by 

- [0 -1J e2 - • 
1 0 

(25) 

Note that this e2 is not necessarily identical with the 
original imaginary unit i defined by Eq. (5). Since 

13 This is theorem (3.5B) on p. 95 of Weyl's book (reference 
2), combined with the theorem that every group ring is fully 
reducible (p. 101 of the same book). 

C is commutative, C = C. The quaternion division 
algebra Q has degree 4 and is generated by 

" ~ r -: 
L 0 

T2 = r ~ 
-1 

~ 0 

o 
o 

Ta = 

o 
1 

o 
o 

1 

o 
o 

o 
o 
1 

o 
o 
o 

o 

o 
o 

o 
1 

o 
o 

1 

o -1 0 

o 1 o 
o 0-1 

o 
1 

o 
o 

o 
0_ 

o -1 

o 
o 
o 
1 

o 
o 

1 

o 

o 
o -1 o 

The inverse algebra Q is then generated by 

T~ = 

T~ = 

1 

o 
o 
o 
o 

-1 

o 
o 
o 
o 

-1 

o 
1 

o 
o 
1 

o 
o 
o 
o 
o 
o 

o 
o 
1 

o 
o 
o 

o 
o 
o 
1 

o 
o 

o -1 

o -1 

1 

1 

o 
o 
o 

o 
o 
1 

o 

o 
1 

o 
o 
o 

o 
o 
o 

-1 

o 0 

o -1 

1 

o 
o 
o 

(26) 

(27) 

This particular representation of Q and Q by real 
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matrices is called the regular representation. It has 
the property that all matrices in Q commute with 
all matrices in Q. Thus Q and Q are commutator 
algebras of each other, as required by the theorem. 

Remark 5. When K is a simple algebra, the division 
algebra E is uniquely fixed and must be either R, C, 
or Q. In these three cases we say that the representa
tion of r by K is of type R, type C, or type Q. 
respectively. 

Remark 6. We shall apply Weyl's theorem to the 
algebras A, B, and D defined at the beginning of 
this section. In the case of A, the group r is identical 
with G1 • In the case of B, the group r is the direct 
product of G1 with the Abelian group r 4 generated 
by (I, i). In the case of D, the group r is the product 
of G with r 4, the commutation rules between G 
and r 4 being given by Eqs. (6) and (7). Each of 
A, B, D is thus a group algebra over R in the 
ordinary sense, although only B is a group algebra 
over C. 

The following lemma14 is important in determin
ing the structural relations between the algebras 
B andD. 

Lemma. Let M1(g), M2(g) be two inequivalent ir
redtwible oomponents of the algebra D. Then tke sub
algebras M1(u) , M2(U) in B are inequivalent, and 
no irreducible component of M 1 (u) oan be equivalent 
to any irreducible component of M 2 (u). 

To prove the lemma, we assume that M1(g) and 
M 2(g) are inequivalent and that M1(u) and M2(U) 
have two equivalent irreducible components. There 
then exists a matrix P in the algebra Y, linking 
the two inequivalent blocks Ml and M2 of the 
algebra D, but commuting with the algebra B. 
This P satisfies 

Pi = iP, (28) 

for any two antiunitary elements all a2 in G. There
fore, 

[M2(al)]-lPM1(al) = [M2(a2)r1PM1(a2) = W, (29) 

where W is a matrix independent of all a2. Hence 

(30) 

for all a in G. Since Eq. (30) also holds with a re
placed by a-I, we have 

(31) 

14 This lemma could probably be deduced as a special case 
from the general theorems of A. H. Clifford, Ann. Math. 38, 
533 (1937), concerning the connections between representa
tions of groups and subgroups. However, it seemed simpler to 
give a direct and elementary proof of the lemma without 
appeal to Clifford's work. 

Therefore, 

(P + W)M1(a) = M2(a)(P + W) (32) 

for all a in G, and this implies 

(P + W)M1(g) = M 2(g)(P + W). (33) 

Since M1(g) and M2(g) are supposed irreducible 
and inequivalent, Schur's lemma 15 now implies 

P + W = O. 

But then Eq. (30) becomes 

PM1(a) = -M2(a)p. 

Equations (28) and (35) together give 

iPM1(g) = M 2(g)iP 

(34) 

(35) 

(36) 

for all g in G, and therefore by Schur's lemma again 

iP = O. 

Thus the operator P cannot exist, and the lemma 
is proved. 

Remark 7. An equivalent statement of this lemma 
is as follows. Let the algebras Y and Z be written 
in the canonical form of Weyl's theorem as direct 
sums of diagonal blocks, 

Y = L Y .. , Z = L Z;, (37) 
k ; 

where the Z; are inequivalent simple algebras and 
likewise the Y k • The lemma states that each Y .. 
is confined to a single block containing precisely 
one Z;. This means that the structural relation 
between Y and Z is completely determined by con
sidering the separate blocks Zj. 

m. WIGNER'S CLASSIFICATION OF IRREDUCIBLE 
REPRESENTATIONS 

In this section we shall establish the connection 
between Weyl's theory of group algebras (Sec. II) 
and the classification of group representations by 
Wigner.1 

A few preliminary observations must first be made. 
The equivalence relations in Eq. (22) refer to a 
transformation to canonical forms by a similarity 
relation (19) in which N may be an arbitrary real 
nonsingular matrix. According to a standard argu
ment,16 since the algebra. K is generated by an 
orthogonal group representation, the transformation 
matrix N may be chosen to be orthogonaL Next we 
show that, when the algebra K is one of the trio A, 
B, or D, the matrix N may be chosen so as to 
commute with i. The operator i belongs to Band D, 

16 See Wigner (reference 1), p. 75, Theorem 2. 
16 See Wigner (reference 1), p. 78. 
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and to the commutator algebras X and Y of A and B. 
So in each of the three cases, i belongs either to 
K or to L. When the transition to canonical forms 
is made, i is transformed into some matrix i' which 
has nonzero elements only within the blocks where 
the canonical form of K or L exists. The trans
formed i' still satisfies 

[i,]2 = -I. (38) 

It is therefore possible to transform i' back into the 
standard form i by a real orthogonal transformation 
working within each diagonal block separately. As 
a result, we have an orthogonal matrix N which 
transforms K and L into the canonical forms (22) 
and transforms i into i. This N then commutes 
with i. 

When N is chosen to be orthogonal and to com
mute with i, N is identical with a unitary trans
formation of the original complex vector space H •. 
Thus the canonical forms (22) are obtained by a 
change in the representation of state vectors, accord
ing to the usual terminology of quantum mechanics. 
It is convenient for us to choose N to be a trans
formation of this special kind. When this is done, 
the division algebras C and Q will not in general 
appear in the particular representations (25) and 
(26). For the quantum-mechanical applications it is 
useful to have i in the standard form (5), whereas 
there is no strong reason to prefer the representations 
(25), (26) of C and Q to other equivalent repre
sentations. 

Let now G1 be a group composed of unitary opera
tors only. For the moment we are not concerned 
with the antiunitary part of G, and so we consider 
the algebras A, B, X, Y only. Suppose that the 
operators A(u) form an irreducible representation 
of Glover C. Since C is the only division algebra 
over C, the forms of the algebras Band Yare com
pletely determined by Weyl's theorem 

B = (0)", Y=nC. (39) 

Equation (39) is in fact merely a statement of 
Schur'S lemma. Ie Also, it follows from the defini
tions that every matrix in X which commutes with 
i belongs to Y. 

The order (number of linearly independent ele
ments) of the algebra B is 2n2

• According to Eqs. (8) 
and (9), the order of A is 2n2 if i belongs to A, 
n" if i does not belong to A. Weyl's theorem then 
gives precisely three possible canonical forms for 
the algebras A, X, as follows: 

A = 2R", (40) 

A = C,,' X = nC, (41) 

A = Q ... , X = mQ, (42) 

where we have written m = In. In all three cases 
the operator i belongs to X, and the order of X 
is 2 or 4. 

Wigner's classification of irreducible representa
tions A(u) is the following. Let A*(u) be the repre
sentation formed by taking the complex conjugate 
in each element of A(u). If 

A*(u) = MA(u)M-\ all u, (43) 

with M unitary and symmetric, then A(u) is 
"potentially real." If Eq. (43) holds with M unitary 
and antisymmetric, then A(u) is "pseudorea1." If 
A*(u) is not equivalent to A(u), then A(u) is "com
plex." We write M as usual as a (2n X 2n) real 
matrix, and define 

P = jM (44) 

with j given by Eq. (4). Then Eq. (43) holds if and 
only if the matrix P belongs to the commutator 
algebra X. Therefore an equivalent statement of 
Wigner's classification is this. If X contains atl anti
unitary operator P with 

p 2 = I, (45) 

then A(g) is potentially real. If X contains an anti
unitary operator P with 

p2 = -I, (46) 

then A(g) is pseudoreal. If X contains no anti
unitary operator P, then A(g) is complex. An in
spection of the canonical forms (40), (41), (42) then 
yields the following theorem. 

Equivalence ThelYrem I. Let A(u) be an irreducible 
repre8entation over C of a unitary group G1• Let the 
algebra A be defined by Eq. (8) with real coejfinients. 
Then 

(i) If A i8 of type R, A(u) i8 potentially real; 
(li) If A i8 of type C, A(u) is oomplex; 

(iii) If A i8 of type Q, A(u) i8 p8eudlYreal. 

In eaoh case the oonver8e i8 also true. 
The following remarks are corollaries of The

orem I. 

Remark 1. The matrices M(u) form a real repre
sentation of the group G1 • This representation is 
irreducible over R when A is of type C or Q. It 
reduces to two equivalent irreducible components 
when A is of type R. 

Remark 2. It is well known8 that A(u) is potentially 
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real if and only if it is equivalent to a representation 
composed entirely of real matrices. We now can 
make another statement of the same kind. The 
irreducible representation A(u) is pseudoreal if and 
only if it is equivalent to a representation composed 
entirely of matrices whose elements are quaternions 
with real coefficients. 

Remark S. It is well-known (see Wigner's book,t 
p. 289) that the irreducible representations of the 
3-dimensional rotation group are potentially real 
for integer spin, pseudoreal for half-integer spin. 
From remark 2 it then follows that the integer
spin representations may be taken to be real, and 
the half-integer-spin representations may be written 
in terms of real quaternion matrices. 

We now turn our attention to the full group G 
including antiunitary operators. We shall be con
cerned with the algebras B, D and their commutators 
Y, Z. An irreducible co-representation of G is a set 
of matrices M(u) , M(a) such that the algebra D 
is irreducible over R. According to Weyl's theorem 
there are then three possibilities for the canonical 
forms of D and Z. 

Z = (2n)R, 

Z = nC, 

D = Q"" Z = mQ, m = in. 

(47) 

(48) 

(49) 

The algebra B may now be reducible, but its 
irreducible components must be of the form sC ,. Also, 
by Eqs. (9) and (10), the order of D must be exactly 
twice that of B. Equations (47), (48), and (49) then 
imply that the order of B is 2n2, n2, in' in the three 
cases. The only possibilities are 

B = C .. , 

B = Cm. + C"., 

B = 2C ... , 

Y = nC) 

Y= mC+ mC, 

Y = mC2 , 

(50) 

(51) 

(52) 

and these correspond precisely to the three alterna
tives (47) to (49). 

Wigner's classification of irreducible co-representa
tions1 is the following. The co-representation is type I 
if its unitary part is irreducible. It is type II if its 
unitary part reduces to two equivalent irreducible 
components. It is type III if its unitary part reduces 
to two inequivalent irreducible components. Now 
when the co-representation generates the algebra D, 
the unitary part of it generates the algebra B. An 
inspection of Eqs. (50) to (52) shows that these 
three alternatives correspond to the Wigner types I, 
III, II, respectively. 

Equivalence Theorem II. Let A(g) be an irreducible 

co-representation over C of a group G including anti
unitary operations. Let the algebra D be. defined by 
Eg. (10) with real ooefficients. Then 

(i) If D is of type R, A(g) is of Wigner type I, 
(ii) If D is of type C, A(g) is of Wigner type III, 

(iii) If Dis of type Q, A(g) is of Wigner type II. 

In each case the converse is also true. 
Remark 4. If follows from this theorem that an 

irreducible co-representation is of type II if and 
only if it can be expressed in terms of matrices 
whose elements are real quaternions. 

Remark o. According to Eqs. (47) to (52), the 
algebra Y has always precisely double the order 
of the algebra Z. Also, it is known that Y contains 
the matrix i, which commutes with Z but does not 
belong to Z. Therefore, in the case here considered 
(D being irreducible and Z a simple algebra), Y 
is precisely the direct product of Z with the algebra 
generated by (I, i). 

Remark 6. The statement that Y is the direct 
product of Z with (I, i) has been established for 
the case of Z simple. However, by virtue of the 
lemma of Sec. II (see remark 7 following the lemma) 
the same relation between Y and Z holds in the 
general case. 

Remark 7. The lemma of Sec. II can be stated 
very concisely as a statement about co-representa
tions: inequivalent irreducible co-representations of 
G contain inequivalent irreducible representations 
of GI • 

IV. FURTHER ANALYSIS OF THE WIGNER 
CLASSIFICATION 

The equivalence Theorems I and II are so alike 
in form that one might suppose them to be two 
statements of the same triple alternative. We shall 
show that in fact the precise opposite is true. The 
two triple alternatives are entirely independent. 
Within the same irreducible co-representation of G, 
anyone of the three types of algebra D may occur 
in combination with anyone of the three types 
of algebra A. 

To study the relation between the two theorems, 
we fix a particular irreducible co-representation A(g) 
of G and investigate the possible structure of the 
six algebras A, B, D, X, Y, Z in combination. 
Since A(g) is irreducible, the possible structures 
for D, Z, B, Yare described by Eqs. (47) to (52). 
The representation A(u) of G1 is however not 
necessarily irreducible. Theorem I, and the three 
alternatives given by Eqs. (40) to (42), apply 
directly only to the irreducible components of A(u). 
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When D is of type R, then A(u) is irreducible 
and Eqs. (40) to (42) apply unchanged. When D 
is of type Q, then, according to Eq. (52), A(u) splits 
into two identical irreducible components, or sym
bolically A(u) = 2A'(u). In this case Eqs. (40) to 
(42) apply to A'(u). When D is of type C, then 
Eq. (51) holds, and so A(u) splits into two irreducible 
components inequivalent over C, 

(53) 

The real representation M(u) of Gl splits corre
spondingly into two components 

M(u) = M 1(u) + M 2(u). (54) 

Equations (40) to (42) apply to Al and A2 separately. 
However, we shall prove that the algebra A is 
necessarily of the same type (R, C, or Q) for the 
representations Al and A2 • Thus one of Eqs. (40) 
to (42) applies to both components of A(u). 

Let a be anyone of the antiunitary operators 
in G. The transformation 

u --+ V(u) = a -100 (55) 

is an automorphism V of the unitary group Gl • 

The representations 

Ay(u) = A(V(u», M y(u) = M(V(u» (56) 

differ from A(u) and M(u) only by a relabeling of 
the elements of G1 • Thus M y(u) and M(u) generate 
isomorphic group algebras. Moreover, Eq. (54) im
plies 

M y(u) = [M(a)r 1M(u)M(a) == M(u) , (57) 

where the equivalence is over R and not over C. 
Suppose now that D is of type C and Eq. (54) holds. 
Then Eq. (57) means either 

M1y(u) = [M(a)]-IMl(u)M(a), 

M2Y(U) = lM(a)rlMiu)M(a), (58) 

or 

Ml y(u) = [M(a)rlM2(u)M(a) , 

M2Y(U) = [M(a)r 1M 1(u)M(a). (59) 

Because the algebra D generated by M(u), M(a), 
and i is irreducible, Eq. (58) cannot hold. There
fore Eq. (59) must hold and 

(60) 

The algebra A generated by MICU) is therefore 
necessarily of the same type as that generated 
by M2(U). 

We may thus classify irreducible co-representa-

tions of G into nine possible cases, which we denote 
by RR, RC, RQ, CR, ... , QQ. Case CR, for example, 
means that algebra D is of type C while algebra A 
is of type R, Le., we have a co-representation of 
Wigner type III whose unitary part splits into two 
irreducible inequivalent representations each of 
which is potentially real. 

Using Eqs. (40) to (42) we can write down the 
possible forms of the algebras A and X in each of 
the nine cases: 

caseRR, A = 2R .. , X = nR2' (61) 

easeRC, A = C .. , X =nC, (62) 

case RQ, A = Qm, X= mQ, (63) 

case CR, A == 2Rm + 2Rm , X = mR2 + mR2 , 

(64) 

case CCI, A = Cm + Cm , X == mC + mC, 
(65) 

case CC2, A = 2Cm , X = mC2, (66) 

case CQ, A = Qp + Qp, X = pQ + pQ, (67) 

case QR, A = 4R .. , X = mR4' (68) 

case QC, A = 2C"" X = mCz, (69) 

case QQ, A = 2Qp, X = pQ2, (70) 

For convenience we wrote here m = tn, p = In. 
The forms of A and X are uniquely fixed in all 
cases except CC. Case CC divides into two alterna
tives CC1 and CC2. Case CC1 holds when the 
representations M 1(u) and M2(U) are inequivalent 
over Rj case CC2 holds when Ml and M2 are equiva
lent over R. 

The results (61) to (70) follow immediately from 
Eqs. (40) to (42) when D is of type R or Q. However, 
when D is of type C some further argument is 
needed. Suppose then that D is of type C, so that 
Eqs. (48) and (51) hold, and the representation 
M(u) splits according to Eq. (54). When Ml and M2 
are inequivalent over R, every matrix commuting 
with the M(u) must commute separately with M1(u) 
and M2(U). The algebra X is then the direct sum 
of the commutator algebras of Ml and M 2 • There
fore for Ml and M2 inequivalent, Eq. (64), (65), 
or (67) holds according as A is of type R, C, or Q. 

It remains to consider the case in which D is 
of type C while Ml and M2 are eauivalent over R. 
There is then a real matrix L which commutes with 
all the M(u) but does not commute with Ml(U), 
M 2 (u) separately. This L satisfies 

M1(u) = L-1M 2(u)L, Miu) = L-1M 1(u)L. (71) 
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Since A1(u) and A2(u) are inequivalent over C, L 
must anticommute with i. Now suppose if possible 
that A were of type R or Q. Then there would exist 
also a matrix L' in X, anticommuting with i and 
commuting with each of M 1(u), M 2(u) separately. 
The product U = LL' would be a matrix com
muting with i and also satisfying Eq. (71). This 
is impossible since Al and A2 are inequivalent over C. 
We have thus proved that, if D is of type C and 
M 1 and M 2 are equivalent, A is also necessarily 
of type C. There exists then only the case CC2 
with A and X given by Eq. (66). 

We next discuss a special situation in which the 
above enumeration of possibilities simplifies con
siderably. We say that the group a is "factorizable" 
if the automorphism V given by Eq. (55) is an inner 
automorphism of a1 • Suppose that a is factorizable. 
Then there exists an element w in a1 such that 

V(u) = a-Iua = w-Iuw, all u in al • (72) 

Then there exists an antiunitary operator 

(73) 

in a which commutes with all elements of a1 • 

Conversely, if such T exists, then V (u) is an inner 
automorphism for any choice of the antiunitary 
operator a in Eq. (55). In many physical applica
tions, when such an operator T exists it is con
venient to give it the name "time-inversion opera
tor." In any representation M(g) of a, the anti
unitary matrix M(T) belongs to the algebra X. 

We now classify the possible types of irreducible 
co-representation of a factorizable group a. Many 
cases can be immediately eliminated. First, the 
matrix M(T) belongs to X but does not belong to 
Y since it anticommutes with i. Therefore X ¢ Y 
for a factorizable group. Hence, by comparing Eqs. 
(50) to (52) with Eqs. (62), (65), and (69), the 
cases RC, CC1, and QC are excluded. Next, suppose 
that D is of type C. Then Eq. (72) gives 

M v(u) = [M(w)r1M(u)M(w), (74) 

with M(w) unitary. Since A1(u) and A2 (u) are in
equivalent over C, Eq. (74) implies 

M1V(u) = [M(w)r1M 1(u)M(w), 

M 2V(u) = [M(w)r1M 2(u)M(w). 

This together with Eq. (60) shows that M1(u) and 
M 2 (u) are equivalent. We proved earlier that cases 
CR, CC1, and CQ are then impossible. 

The surviving cases for a factorizable group a 
are RR, RQ, QR, QQ, and CC2. 

The operator [M(T)J2 commutes with all M(g) 
and with i, and it is also equal to M(u) with u = T2. 
Thus [M(T)J2 belongs to both the algebras D and Z. 
By Eqs. (47) to (49), the common part of D and Z 
is (2n)R when D is of type R or Q, and is nC when 
D is of type C. Since [M(TW is a real orthogonal 
matrix, it must be a scalar 

[M(T)]2 = E = ±1, (75) 

in any of the four cases RR, RQ, QR, QQ. However, 
Eq. (75) need not hold in case CC2. 

We determine lastly which cases go with the plus 
sign and which with the minus sign in Eq. (75). 
When a is factorizable and Eq. (75) holds, the 
algebra D is a direct product of the commuting 
algebras A and W, where W is the algebra of order 4 
generated by [I, i, M(T), iM(T)]. The structure 
of W = (D / A) is then determined as follows: 

caseRR, A = 2Rn, D = R2n , W '" R2 , (76) 

case RQ, A = Qm, D = R2n , W", Q, (77) 

case QR, A = 4Rm, D = Qm, W,,-, Q, (78) 

case QQ, A = 2Q", D = Qm, W "-' R2. (79) 

The sign of E in Eq. (75) is plus when W is of type R2 , 

minus when W is of type Q. These results will now 
be summarized in a theorem. 

Theorem III. Let M(g) be an irreducible co-repre
sentation of a factorizable group a, in which M(T) 
is anti-unitary and commutes with all the M(g). Then 
the following three possibilities alone exist: 

(i) case RR or QQ with [M(T)]2 = +1, 
(li) case RQ or QR with [M(T)]2 = -1, 

(iii) case CC2 with [M(T)]2 = cos a + e sin a, 

where a may be any real angle, and e is an element 
of the algebra A with e2 = -1. 

Remark 1. It is noteworthy that the sign of 
[M(T)]2 is determined neither by the Wigner type 
of the co-representation M(g), nor by the reality 
type of the unitary subrepresentation M(u) , but 
only by these two types in combination. Thus 
[M(TW = +1 corresponds to Wigner type I and 
potentially real, or to Wigner type II and pseudo
real; [M(T)12 

= -1 corresponds to Wigner type II 
and potentially real, or to Wigner type I and 
pseudoreal. 

Remark 2. In the majority of applications of the 
theorem, T will be identified with the physical 
operation of time inversion. In these circumstances 
[M(T)]2 = +1 for co-representations with integer 
spin, and [M(T)]2 = -1 for co-representations with 
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half-integer spin.7 Therefore cases RR and QQ occur 
only with integer spin, cases RQ and QR only with 
half-integer spin. Case CC2 may occur with either 
integer or half-integer spin. 

V. EXAMPLES 

The classification theory of Sees. III and IV 
would be empty if one could not produce examples 
to show that each of the enumerated possibilities 
can actually occur. We list here one example of 
each of the ten possibilities (61) to (70). The first 
five examples are factorizable and illustrate Theorem 
III. The last five are nonfactorizable. 

To simplify the notations we write (2 X 2) 
matrices in terms of the standard basis 

12 = [~~J el = [~ ~l 
e2 = [0 -lJ, ea = [1 OJ. (SO) 

1 0 0 -1 

The quaternion units are defined by Eqs. (26) and 
(27). The order of the co-representation is the order 
of the real matrices M(g); this is twice the di
mension of the complex vector space He. 

Example 1. Case RR. Order 2. 
GI contains identity I only. G = [I, T], T2 = I. 

MW = e2, 

M(T) = ea, 

Example~. Case QR. Order 4. 
GI generated by [I, T2], G 
with T' = I. 

M(~) = T2, 

M(T) = TI, 

Example 3. Case RQ. Order 4. 
G is generated by the 3-dimensional rotation 
group 0., with the time-inversion operator T 
commuting with Os. Representation M(u) is 
with spin 1. 

M(n,cp) = exp[!cpn·fJ, 

M(~) = T~, M(T) = T{, [M(T)] 2= -I,. 

Example 4. Case QQ. Order 8. 
Same group as example 3. Representation M(u) 
has two spin-l components which are inter
changed by the T operator. 

M(n, cp) = exp [lqm. fJ X 12 , M(~) = T~ X 12 , 

M(']') = T{ X e2, 

Example 5. Case CC2. Order 4. 
G is generated by the 2-dimensional rotation 
group O2 together with an operator T com
muting with O2 , The operator T is a combina
tion of time-inversion with space reflection. The 
phase angle a is a fixed parameter. 

M(cp) = cos cp[I2 X 12J + sin cp[ea X e2], 

M(t} = 12 X e2' 

M(T) = cos !a[el X ea] + sin 1a[e2 X el], 

[M(T)]2 = cos a[I2 X 12] + sin area X e2] = M(a). 

Example 6. Case RC. Order 2. 
G is generated by the 2-dimensional rotation 
group O2 with an operator T not commuting 
with O2 , T is now time-inversion without space 
reflection. 

M(cp) = (cos cp)I2 + (sin cp)~, 

M(~) = e2, 

Example 7. Case QC. Order 4. 
Same group as example 6. 

M(cp) = (cos cp)I, + (sin cp)T2' 

M(T) = Tl' 

Example 8. Case CR. Order 4. 

M(T) = ea. 

G1 is a 4-element group generated },y the 
reflections Rz and R. in two perpendicular 
planes. G = [GIr TGIJ, T2 = I, where T is a 
combination of time-inversion with a reflection 
in the plane x = y. 

M(R,,) = ea X 12 , 

M(R~) = -ea X 12 , 

M(T) = el X ea. 

Example 9. Case CQ. Order 8. 
GI is a direct product lOa X Oa] of two 3-di
mensional rotation groups. G = [Gt, TG1 ], 

where T interchanges the two groups. 

M(m, cp; n, If) = [t(I2 + ea)J X exp [#m· TJ 

+ [l(I2 - ea)J X exp [!1/tfi'T], 

M(~) = 12 X T~, 

Example 10. Case CCI. Order 4. 
G1 = [02 X O2], G = [Gl , TG I ] where T inter
changes the two O2 groups. 

M(cp, If) = [l(I2 + ea)] X [cos 1/>12 + sin cpe2] 

+ [!(I2 - ea)] X [cos #2 + sin Ife2], 
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The most interesting of these examples are num
bers 4, 5, 8. They have some features which are 
nontrivial and appear to be novel. We leave to the 
reader the exercise of verifying that in each case 
the commutator algebras X, Y, Z have the structure 
described in Eqs. (47) to (52), (61) to (70). 

VI. ALGEBRAIC CHARACTERIZATION OF 
REPRESENTATION TYPES 

In this section we conclude the study of repre
sentation types by proving a generalized version 
of a classical theorem of Frobenius and Schur. Let 
M(g) be a representation of a group G, irreducible 
over some ground field cP with characteristic zero. 
We suppose that the group G is either finite or 
compact, and that the matrices M(g) have a finite 
order d. If f(g) is any function of the group element 
g, the average of f(g) over G is defined by 

To prove the theorem, let g' be any element of G; 
Then 

P H •kl = avo [M.;(g,-lg-I)MkZ (gg')] 

= L M .... (g,-I)P m; .k..M nl(g') . ..... 

(85) 

Thus Pij .u, considered as a matrix in the indices 
(i, l), commutes with all M(g') and belongs to the 
commutator algebra L. Similarly, PH .1:1 belongs to 
L when considered as a matrix in (k, j). Let el', 
p. = 1, ... , e, be a linearly independent basis for 
the algebra E. Then Eq. (84) gives 

where the 0,., are coefficients in CPo 
Now consider the sum 

(86) 

(87) 

avo f(g) = h -1 L..J f(g) , (81) On the one hand, by Eq. (86), 
}. 

or by (L);I: = (It),,; X Ls}.,.c,.,(e'),,;, (88) ,., 
avo f(g) = V-I J f(g) dp.(g) , (82) where 

where h is the order of G when G is finite, and where 
11 is the volume of G in the invariant group measure 
dp.(g) , when G is compact. We consider the fourth
rank !tensor 

P H •kl = avo [MH(g-l)Mkl(g)]. (83) 

Let K be the group algebra generated by the M(g) 
with coefficients in CPo 

The structure of K is given by Eq. (24), since 
Weyl's theorem holds in any field with charac
teristic zero. The commutator algebra L of K has 
the structure 

L = I, X E, (84) 

where E is an irreducible division algebra of order 
e over CP, and d = teo 

The type of the representation M(g) is specified 
by the division algebra E. For example, when cP = R 
is the field of real numbers, there are three types 
of representation corresponding to E = R, C, or Q. 
The tensor PH .kl is useful in classifying representa
tions by virtue of the following theorem. 

Theorem IV. The tensor PH.J:I depends only on 
the integer t and on the algebra E, and is otherwise 
independent of the group G and of the representation 
M(g). 

Thus PH .kl is characteristic of the type of the 
representation M(g). 

s}.,. = spur [eV]. (89) 

On the other hand, by Eq. (83), since e}. commutes 
with all the M(g), 

}. 

(L);I: = avo [M(g)(I, X i)M(g-I)]ki 
(90) 

= (It X ih;. 

Comparison of Eqs. (88) and (90) shows that 

(91) 

so that the matrix 0,., is the invel'S(;l of the matrix s}.,.. 
The coefficients 0,., are thus uniquely determined 
by E, and Eq. (86) establishes the truth of The
orem IV. 

We shall be interested in applying Theorem IV 
to cases in which the matrices M(g) are orthogonal. 
So we assume 

(92) 

The algebra K then contains the transposed of 
every matrix in K, and L has the same property. 
We can therefore choose the basis elements e>' of 
the algebra E to be either symmetric or antisym
metric. Suppose that the number of symmetric i 
is q, and the number of antisymmetric i is q'. 
The invariant 

(93) 
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provides a simple criterion for the type of the 
representation M(g). 

Theorem V. When M (g) is an orthogonal irreducible 
representation of G over a field 4.> of characteristic zero, 

p = avo spur [M(l)] = q - q'. (94) 

The first part of Eq. (94) follows at once from the 
definition of P and Eq. (92). To prove the second 
part, we suppose the e>' chosen so that 

(95) 

with each '1/>. equal to ±1. Then Eqs. (86), (89), 
and (91) give 

P = L cl'p(el');;'I/.(eP);i 
p.llii 

(96) 

L'I/. = q - q'. 

Remark 3. We apply remark 1 to the situation 
discussed in Theorem II of Sec. III. Let A(g) be 
an irreducible co-representation over C of a group G. 
According to remark 6 of Sec. II, the group algebra 
D is generated over R not by the group G itself 
but by an extended group r. The representation 
of r which generates D consists of the matrices 

M(u) , iM(u) , M(a) , iM(a) , (105) 

which are all real and orthogonal. When Theorem V 
is applied to the group r, the contributions from 
M(u), iM(u) to P cancel each other, while the 
contributions from M(a) , iM(a) are equal. Thus 

P = t avo spur [M(a2
)], (106) 

averaged over the antiunitary part only of G. If 
A(u) is the unitary part of the co-representation, 
A(u) is irreducible when D is of type R, while A(u) 
has two irreducible components when D is of type 
Cor Q. In any case we let A'(u) be one of the (one 
or two) irreducible components of A(u) , and we write 

II' = avo [spur A'(a2
)]. (107) 

Remark 1. Suppose that 4.> is the field of real 
numbers. Then Theorem V gives the following 
characterization of the type of the representation 
M(g): 

By Eq. (100), this II' is equal to P when D is of 
(97) type R, and is equal to tP when D is of type Cor Q. 
(98) The criterion of Eqs. (97)-(99) then becomes 

P = +1 for M(g) of type R, 

P = 0 for M(g) of type C, 

P = -2 for M(g) of type Q. (99) 

Remark 2. We apply remark 1 to the situation 
discussed in Theorem I of Sec. III. Let A(u) be an 
irreducible representation over C of a unitary group 
GI • Then the corresponding real representation M(u) 
splits into two equivalent irreducible representations 
M'(u) when M(u) is of type R, while M(u) is ir
reducible when it is of type C or Q. The corre
spondence between A(u) and M(u) gives 

spur M(u) = 2 Re spur A(u), (100) 

and therefore the quantity 

II = avu [spur A(u2
)] (101) 

is equal to tP. This P is given by Eqs. (98), (99) 
when M(u) is of type C, Q, but is equal to (+2) 
when M(u) is of type R since Eq. (97) then refers 
to the irreducible component M'(u). So we derive 
the classical criterion of Frobenius and Schur17 for 
the type of an irreducible unitary representation: 

II = +1 for A(u) potentially real, (102) 

II = 0 for A(u) complex, (103) 

II = -1 for A(u) pseudoreal. (104) 
----

17 G. Frobenius and I. Schur, reference 6. 

II' = + 1 for A(g) of Wigner type I, (108) 

II' = 0 for A(g) of Wigner type III, (109) 

II' = -1 for A(g) of Wigner type II. (110) 

This elegant analog to the Frobenius-Schur criterion 
was discovered by Bargmann.ls 

VII. THEORY OF MATRIX ENSEMBLES 

In this section we deal with the problem for which 
the theory of Sec. II was specifically introduced, 
namely the classification of ensembles of matrices 
with given symmetry properties. An ensemble is 
a set of objects with an assigned probability dis
tribution. We shall define the probability distribu
tions later; it is necessary first of all to study the 
classification of sets of matrices invariant under 
some symmetry-group G. 

As in Sec. II, we suppose that the matrices S 
which we are studying operate in a complex vector 
space Hoof finite dimension n. We are given a 
representation of the group G in H 0' consisting of 
unitary operators A(u) and antiunitary operators 
A(a). The matrices S are supposed to be invariant 
under G, but this notion of invariance already intro
duces an ambiguity. There is a choice between two 

18 V. Bargmann (private communication). 
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definitions of invariance. We say that 8 is "formally 
invariant under G" if 

8A(g) = A(g) 8, all g in G. (111) 

Formal invariance means that 8 is unchanged by 
any of the transformations 

8 - A(g)S[A(g)r1, (112) 

whether g be unitary or antiunitary. We say that S 
is "physically invariant under G" if for every pair 
of vectors (cp, 1/;) in He 

(cp, S1/;) = (A(u)cp, 8A(u) 1/;) = (A(a) 1/;, SA(a)cp). (113) 

Note that the initial and final state vectors are 
interchanged in Eq. (113) in the case of antiunitary 
elements of G. The effect of Eq. (113) is that we 
have instead of Eq. (111) 

8A(u) = A(u) 8, 8A(a) = A(a) 8+ , (114) 

where S+ means the Hermitian conjugate of S. 
The two types of invariance are relevant in dif

ferent circumstances. If S is, for example, a unitary 
operator describing a change in the representation 
of states, then formal invariance under G is a 
meanmgful requirement, signifying that this change 
in representation does not disturb the symmetry 
relations of the states under the operations of G. 
If 8 is an operator characterizing a physical system, 
for example a scattering matrix, then the anti
unitary operations of G are associated with a re
versal of the physical roles of initial and final states; 
in this case physical invariance of S is the physically 
meaningful requirement, signifying that the system 
to which 8 belongs is invariant under the operations 
of G in the usual dynamical sense. The two definitions 
of invariance under G become equivalent only when 
the matrix S is Hermitian, for example when S is 
the Hamiltonian of a system. 

It is convenient to transcribe the matrix S into 
a real (2n X 2n) matrix operating in the real vector 
space H R according to Eq. (2). The real form of S 
then satisfies 

Si = is, (115) 

with i defined by Eq. (5). For 8 to be invariant 
under the unitary subgroup G1 (in either sense) it 
is necessary and sufficient that 

8M(u) = M(u)S, (116) 

where the matrices M(g) are the representation of 
G defined in Sec. II. The condition for 8 to be 
formally invariant under G is 

SM(a) = M(a)S, a in G, (117) 

in addition to Eq. (116). The condition for S to be 
physically invariant under G is Eq. (116) and 

SM(a) = M(a)ST, a in G, (118) 

where ST means the transpose of 8. 
From Eqs. (115), (116) we see that the set Y 

of matrices in H R invariant under G1 is identical 
with the commutator algebra Y defined by Eqs. (9) 
and (12). From Eqs. (115)-(117), the set Z of 
matrices formally invariant under G is identical 
with the commutator algebra Z defined by Eqs. 
(10) and (13). We define the set· W to consist of 
those matrices which are both formally and physi
cally invariant under G. Then W is the set of all 
symmetric matrices in Z. Lastly, we define V to be 
the set of matrices physically invariant under G. 
Then we shall prove 

Theorem VI. For S to be in V, it is neoessary and 
sufficient that 

(119) 

where S1 and S2 are matrices in W. 
The sufficiency follows immediately from the 

relations 

iM(a) = -M(a)i. (120) 

To prove the necessity, we observe that all the 
matrices M(g) are orthogonal, and thus 

(121) 

Hence ST belongs to V whenever S does, and we 
may then write 

S = Sf + S", (122) 

where S' is symmetric and S" antisymmetric, and 
both Sf, S" belong to V. The matrices S1 = Sf 
and 8 2 = -is'' now satisfy both Eq. (117) and 
Eq. (118), and therefore belong to W. 

The results of Sec. II, and in particular Weyl's 
theorem, provide us with a complete structural 
analysis of the sets V, W, Y, Z. We use Frobenius' 
theorem (Sec. I) in order to replace the division 
algebras E; of Weyl's theorem by the standard 
trio R, C, and Q. The integers tj of Weyl's theorem 
are now irrelevant since they contribute to the 
structure of the group algebra D but not to the 
commutator algebra Z. We thus state the main 
result of the theory of matrix ensembles as follows. 

Theorem VII. The set Z of matrioes in H R formally 
invariant under G is a direot product of irreducible 
oomponents, one component Zj corresponding to eaoh 
inequivalent irreducible ao-representation of G oon
tained in the given oo-representation A(g). Each oom-
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ponent Z I may be written as the set of all square 
matrices of order s/ with elements 'in an algebra ~i' 
Eooh ~I is either R, the algebra of real numbers, or 0, 
the algebra of oomplex numbers, or Q, the algebra of 
reat quaternions. 

Remark 1. The structure of the set Z i depends 
on the Wigner type of· the corresponding co-repre
sentation of G in the manner specified by equivalence 
Theorem II. The reality type of the unitary part 
of the representation, specified by equivalence 
Theorem I, is here entirely irrelevant, except inso
far as the Wigner type and the reality type may be 
correlated for factorizable groups G according to 
Theorem III. 

According to remark 7 at the end of Sec. II, the 
sets V, W, Y are direct products of independent 
components, one corresponding to each component 
Zj of Z. To avoid unnecessary repetition, we describe 
the structure of V, W, Y corresponding to a single 
component of Z. Thus in the following theorems 
we assume that Z is irreducible, which means that 
all irreducible co-representations contained in A(g) 
are equivalent. From this special case the general 
case is easily derived by writing Z j for Z and taking 
a direct product over j. 

We have seen, in Remarks 5 and 6 of Sec. III, 
that the algebra Y is generated by i and Z. The 
matrix i commutes with Z, and therefore commutes 
with the algebras ~i' Hence we may form a new 
algebra cfli by adding the independent unit i to cfl j • 

Theorem VIII. When Z is irreducible, the set Y of 
matrices in HB invariant under G1 may be written 
as the set of all square matrices of order s with ele
ments in an algebra cfl', derived from ~ by allowing 
each element of cfl to have complex instead of real 
coeffidents. 

Remark S. When cfl = R, cfl' is the algebra of ordi
nary complex numbers. When ~ = 0, cfl" is the 
algebra of complex-complex numbers with two com
muting imaginary units; in this case cfl" is reducible 
and has the stl'llcture 

~·""'"'O + O. (123) 

When ~ = Q, ~c is the algebra of complex quater
nions, which is equivalent to an algebra of complex 
(2 X 2) matrices, 

(124) 

The algebra W consists of matrices which are 
symmetric when written in expanded form in H B' 

When S is written, as in Theorems VII and VIII, 
as a smaller matrix with elements in ~,the condition 
of symmetry becomes a condition of ~ duality, as 

follows. We define the ~ conjugate of a number in 
~ to be the number obtained by reversing the signs 
of the coefficient of e2 (in the case .~ == 0) or of 
the coefficients of 'TlJ 1'2, 'Ta (in the case ~ = Q). 
We define the ~ dual of a matrix to be the trans
posed matrix with each element ~ conjugated. Since 
the units e2, 'T1, 'TI, 'Ta when written in expanded form 
are antisymmetric, a matrix which is symmetric 
in expanded form becomes ~ self-dual when written 
with elements in ~. 

Theorem IX. When Z is irreduc~'ble, the set W of 
matrices in H B invariant under G in both physical 
and formal senses may be written as the set of all 
square self-dual matrices of order s with elements 
in ~ = R, 0, or Q. 

The ~ conjugate of an element of ~e is obtained 
by changing the signs of the coefficients of the ~, 
units, leaving the unit i unchanged. So from The
orems VI and IX follows immediately the result: 

Theorem X. When Z is irreducible, the set V of 
matrices in H 11 invariant under G in the physical 
sense may be written as the set of all square self-dual 
matrices of order s with elements in ~c. 

Remark 3. We now finally make contact with the 
theory of matrix ensembles developed earlier by 
the author.' Let V u be the subset of unitary matrices 
in V. Then Theorem X states that, for the most 
general symmetry group G and the most general 
quantum-mechanical representation of G, the set 
V u is a direct product of independent components, 
each of which is identical with one of the three 
ensemble-spaces T I , T 2 , and T, defined in reference 4. 
The cases T I , T" T. correspond, respectively, to 
~ = R, 0, Q. The spaces T I , T 2 , and T. were 
originally obtained by considering special groups G 
of a very simple kind. It is satisfactory to find 
that the same three spaces, and no others, occur 
in all possible circumstances. 

The reason for choosing V u as the space in which 
to construct an ensemble is that no natural defini
tion of uniform probability appears to exist in V. 
For the same reason we study the subset Z u of 
unitary matrices in Z. The following theoremfollows 
from Theorem VII together with well-known proper
ties of the classical groups.' 

Theorem XI. The set Zu of unitary matrices in HJf 
formally invariant under G is a direct product of ir
reducible components, each of which is a simple 
classical group. When ~; = R, 0, or Q. the corre
sponding component of Z u is an orthogonal, unitary, 
or symplectic group of dimension Si' 

In the same way we define the unitary subset 
Y u of Y. The components of Y u are 
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Y u = U(s) , U(S) X U(s) , U(2s) , (125) of V u is of the form 

corresponding to S = exp [iH], H in W, (131) 

Zu = O(s), U(s) , Sp(2s). (126) while a matrix S of Zu is of lhe form 

The unitary space V u is not a group. But it can be 
represented conveniently in terms of the groups 
Y u, Zu in the following way. A matrix S belongs 
to V u if and only if it can be expressed as a ~ 
symmetric product 

S = UUD
, U in Yu, (127) 

where D denotes cP dual. All matrices U' of the form 

U' = UU l , (128) 

correspond to the same S by Eq. (127), and every 
U' corresponding to S is of the form (128). Thus 
each matrix S in V u corresponds to a unique co-set 
of the subgroup Zu in the group Yu. We have thus 
proved 

Theorem XII. The set V u of unitary matrices in V 
is abstractly equivalent to the homogeneous space 
(Y u/Zu) , the quotient of the group Y u by its sub
group Zu. 

Having defined the spaces Z u and V u, we are 
now in a position to define the corresponding in
variant matrix ensembles. The ensemble E P of 
unitary matrices formally invariant under G is 
defined as the space Z u with probability distribution 
given by the invariant group measure in Zu. Since 
Z u is a direct product of simple classical groups, 
the group measure in Z u is merely the product of 
the invariant measures in the irreducible com
ponents of Z u. The ensemble EP of unitary matrices 
physically invariant under G is defined as the space 
V u with measure given according to Theorem XII by 

(129) 

Here dp.(Y u) and dp.(Zu) are the invariant group 
measures in Y u and Zu, and the quotient measure 
is defined in the obvious way. Alternatively, the 
quotient measure may be uniquely defined as the 
measure in V u which is invariant under all auto
morphisms 

S~ USUD
, U in (130) 

of V u into itself. The ensemble E P is a direct product 
of irreducible components, each of which is identical 
with one of the three types E l , E 2 , E. which were 
studied in reference 4. 

Two other types of ensemble naturally suggest 
themselves for study, composed of Hermitian and 
anti-Hermitian matrices, respectively. A matrix S 

S = exp [A], A in ZA, (132) 

where ZA is the subset of Z containing anti-Hermitian 
matrices. Thus Wand ZA are the spaces of in
finitesimal generators for V u and Zu, respectively. 

We define the Hermitian Gaussian ensemble EE 
as the space W of matrices H with the probability 
distribution 

dp.(H) = C exp [ - (spur H2) /4a2
] II dH i~ , (133) 

where c, a are constants and the product extends 
over all the independent real coefficients of the 
elements of H in the algebra CPo The anti-Hermitian 
Gaussian ensemble EE is defined as the space Z A 

with probability distribution 

dp.(A) = C exp [+(spur A2)/4a2] II dA~I' (134) 

These ensembles have an algebraic structure pre
cisely analogous to that of E P and E P

, respectively. 
They divide into irreducible components each of 
which is of one of the three types R, C, or Q. In 
particular, EE is the natural ensemble to use in 
describing the statistical properties of the Hamil
tonian H of a system known to be physically in
variant under the group G. 

The physical motivation for considering ensembles 
of matrices with probability distributions defined 
in these various ways has been discussed by Wignerl9 

and by the author.4 In the case of the ensembles 
E P and E P

, consisting of unitary matrices, the 
existence of a natural uniform measure provides 
an intuitively plausible definition of "equal a priori 
probability." In the case of the ensemblesEE andE A

, 

consisting of Hermitian and anti-Hermitian matrices, 
the choice of a Gaussian probability distribution is 
mainly a matter of mathematical convenience. 
Rosenzwei~o has argued that one should use in 
preference to Eq. (133) a "microcanonical ensemble" 
with the exponential replaced by a delta function 

t5[spur (H2) - 0'2]. 

The algebraic structure of EE and EA would of 
course not be affected by such a change. 

In any physical situation to which the ensembles 
E P or EE are relevant, we have a system specified 
by a unitary operator S or by a Hermitian H. 

lt E. P. Wigner, Proceeding8 of the 4th Canadian Mathe
matic8 Congres8 (University of Toronto Press, Toronto, 
Canada, 1959), p. 174. 

10 N. Rosenzweig, Bull. Am. Phys. Soc. 7, 91 (1962). 
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Since the system is invariant under G, every 
stationary state is associated with a particular ir
reducible co-representation of G. Each irreducible 
co-representation fixes the values of a certain set 
of quantum numbers (spin, parity, isotopic spin, 
etc.) which are attached to the energy levels belong
ing to that co-representation. The fact that the 
ensemble E P or EH is a direct product of irreducible 
components means that the energy levels belonging 
to different sets of quantum numbers are sta
tistically uncorrelated. Thus the statistical proper
ties of energy levels are entirely determined by the 
behavior of the individual level-series, each asso
ciated with one set of quantum numbers. A single 
level-series is described by an irreducible ensemble. 
The final result of our analysis may then be stated 
as follows: When we consider a single series of 
energy levels of a complex system, having definite 
values for all quantum numbers of the symmetry
group G, the statistical behavior of these levels 
follows one of three possible laws, corresponding to 
the three types of irreducible ensemble E P or EH 

vm. EIGENVALUE DISTRIBUTIONS 

In this section we list without proof the joint 
probability distributions of the eigenvalues of 
matrices belonging to the irreducible ensembles 
E F, EA, E P

, EH. In each case the integer s is the 
dimension of the algebra Z over the field «P which 
may be R, C, or Q. The constant c will not be the 
same each time it appears. 

1. EF. Ensemble of Unitary Matrices 
Formally Invariant under G 

(a) «P = R, Zu = O(s). In this case Zu (the 
orthogonal group) splits into two disconnected parts, 
consisting of matrices with determinant ..:l equal 
to + 1 and -1, respectively. There are thus four 
distinct eigenvalue distributions to be listed. 

(i) s = 2n, ..:l = 1, eigenvalues exp (±iej ), 

peel, .. , ,en) = c II [cos ei - cos e;]2. (135) 
i<i 

(ii) s = 2n, ..:l = -1, eigenvalues ±1, exp (±ie;), 

pel, '" , en-I) = e II (1 - cos2 8 j ) 

I 

p(el, ... , 8,.) = e II (1 - cos e;) 
; 

x II [cos ei - cos BJ~. (137) 
i<j 

(iv) s = 2n + 1, ..:l = -1, eigenvalues -1, 
exp (±iej ), 

peel' '" , en) = e II (1 + cos ej ) 

i 

x II [cos ei - cos B;]2. (l38) 
i.<i 

((3) cP = c, Zu = U(s), eigenvalues exp (iB j ). 

PCBI' '" , e,) = c II lexp Cie i ) - exp (i8 j ) 12. (139) 
i<i 

C'Y) cP = Q, ZU = Sp(2s), eigenvalues exp (±iB;). 

PCBI , ••• , B,) = c II (1 - cos2 B;) 
I 

x II [cos ei - COSB;]2. (140) 
;<i 

13. EA. Gaussian Ensemble of Anti-Hermitian 
Matrices Formally Invariant under G 

Ca) cP = R, matrices real and antisymmetric. 
(i) s = 2n, eigenvalues ±iE;, 

peEl, ... ,E,.) = e[n (E; - E;)2] 
i<i 

X exp [- L E~/2a2]. 

(ii) 8 = 2n + 1, eigenvalues 0, ±iE;, 

peEl, ... ,E,.) = e[Il E~][II (E~ - E~?J 
i i<i 

((3) cP = C. Eigenvalues iE j • 

peEl, ... ,E.) = e[II (Ei - EYJ 
i<i 

X exp [- L E~/4a2]. 
; 

('Y) cP = Q. Eigenvalues ±iEj • 

peEl, .. , ,E.) = e[Il EmIl (E~ - E~)2] 
i 1<1 

X exp [ - L: E~/2a2) . 
; 

3. E P
• Ensemble of Unitary Matrices 

Physically Invariant under G 

(141) 

(142) 

(143) 

(144) 

Eigenvalues exp (ie;), each doubly degenerate 
in the case «P = Q. 

(136) p(el,"', e.) = c II /exp (ie;) - exp (ie;)/~, (145) x II [cos eo - cos elY' 
i<i i<i 

(iii) s = 2n + 1, ..:l = 1, eigenvalues + 1, exp (±ie;), with f3 = 1, 2, 4 for cP = R, C, Q, respectively. 
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4. EN. Gaussian Ensemble of Hermitian 
Matrices Invariant (in either sense) under G 

Eigenvalues E j , each doubly degenerate in the 
case ~ = Q. 

PCEI, ... ,E.) = c[II IE; - Ed ll] 
i<i 

X exp [ - ~ E;/4a2
] , (146) 

j 

with {3 = 1, 2, 4 for ~ = R, C, Q. 
Proofs of Eqs. (135) to (140) are to be found in 

Chapter 7 of Weyl's book.2 Equations (141) to (144) 
can be deduced as limiting cases of Eqs. (135) to 
(140) when all angles 6; are small. Similarly Eq. (146) 
can be deduced from Eq. (145). The proof of Eq. 
(145) has been given by the author.4 

The statistical properties of the eigenvalues result
ing from each of these ensembles can be studied by 
following the method used by the author4 for the 
case of Eq. (145). The eigenvalue distribution in 
each ensemble has an exact mathematical analog 
in the form of a classical Coulomb gas. 

We briefly describe the Coulomb gas analogs to 
EF and EA when ~ = R or Q. In EF the numbers 

Xj = cos 6j (147) 

are considered to be positions of unit charges, con
strained to move on the segment [-1 ~ x ~ + 1], 
which may be imagined to be a straight conducting 
wire of length 2. Every two charges repel each 
other with the potential 

W(X; - Xj) = - In Ix; - xd. (148) 

In addition there are fixed charges of q+ units at 
x = +1 and of q_ units at x = -1. When ~ = R, 
the angles 6j are rotation angles of a random rotation 
in the orthogonal group O(s). The values of q+, 
q_ are 

(i) s = 2n,.1 = l;q+ = q- = -1. 
(ii) s = 2n, .1 = -1; q+ = q- = +1. 

(iii) s = 2n + 1, .1 = 1; q+ = +1, q- = -1. 

(iv) s = 2n + 1,.1 = -1; q+ = -1, q- = +1. 
When ~ = Q, the angles 6j are rotation angles of 
a random matrix in the symplectic group Sp(2s). 
In this case q+ = q_ = +1. The temperature of the 

gas is the same for ~ = R or Q, namely, T = !. 
The Gaussian antisymmetric ensembles EA. for 

~ = R or Q have a Coulomb analog composed of 
unit charges with positions 

Xj = E;, (149) 

constrained to move on the semi-infinite straight 
wire 0 ~ x < ro. The repulsion between charges 
is again given by Eq. (148), and T = ! as before. 
There is a fixed charge of q units at x = 0, where 

q = -1 when ~ = R, s = 2n, 

q = +1 when ~ = R, s = 2n + 1, or when cI> = Q. 
In addition to the Coulomb forces, each charge Xj 

is subject to a constant downward force produced 
by a "gravitational potential" 

(150) 

When cI> = C, the ensembles EF and EA become 
identical with E P and E H

, for which the Coulomb 
analogs have been described previously.4 

The whole of the previous analysis4 of level dis
tributions, based on the ensembles E P

, can be re
peated with minor modifications for the other 
ensembles E F

, EA, EH. However, there is one basic 
difference between the physical ensembles EP

, EH 
on the one hand and the formal ensembles E F

, EA 
on the other. 

Theorem XIII. Consider an irreducible ensemble 
of matrices over the field cI>, with order s -+ ro. In 
EF or EA, the local statistical behavior of eigenvalues 
is described by an infinite Coulomb gas with tempera
ture T = ! independent of cI>. In EP or EN the local 
behavior of eigenvalues is described by an infinite 
Coulomb gas with temperature T = 1, !, 1 corre
sponding to cI> = R, C, Q. 

The most striking qualitative feature of the 
physical ensembles EP

, EN is that the strength of 
the repulsion between neighboring energy levels 
depends on the Wigner type of the co-representation 
to which these levels belong. This feature is absent 
in the formal ensembles E F

, EA. 
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A procedure is given for the evaluation of the quantum-mechanicaJ ring sum at finite temperature. 
The method is used for the evaluation of the quantum corrections to the classical Debye-Hiickel free 
energy for an electron gas obeying Boltzmann statistics. The ring sum is shawn to be of the form 
((3et/rAD)P('Y), where'Y = '!./AD,)I. = h/(2mkT)I/I, and AD is the Debye screening length. The quantum 
effects for finite 'Yare due only to the operation of the uncertainty principle. The function P('Y) de
creases monotonically from the classical value r/3, and the form is shown to be 

Ph) = (11'/3)(1 + L: a,,'Y2
(n-I)]3/2 - L: b,,'Y2n

- a. 
n-2 .-2 

The coefficients an and bn are evaluated exactly for small n and asymptotically for large n. The two 
series converge for 'Y' < 'Y.2 = 2.042 .... 

For'Y »'Y. the function P('Y) is also evaluated as an asymptotic expansion in inverse powers of 
'Y1/2. Thus the low-temperature correlation energy of distinguishable electrons is obtained in random 
phase approximation. At zero temperature, the result is the same as the correlation energy obtained 
by Foldy for charged boeons. The correlation pressure in this approximation is negative and diverges 
as pl/4 at high density. 

I. INTRODUCTION 

I T is well known in the classical theory of the 
electron gas and in the theory of electrolytic 

solutions that the sum of the ring interactions gives 
the most important correction to the ideal gas free 
energy in the low density limit, namely, the Debye
Huckel term.! Similarly, the same group of terms 
gives the .Gell-Mann and Brueckner expression for 
the correlation energy of the electron gas at high 
density and zero temperature.2 A general expression 
for the sum of the ring interactions valid at all 
temperatures has been derived by several authors 
using different formalisms for the perturbation ex
pansion of the quantum-mechanical partition func
tion.a- 6 In published work, this general formula 
has been used only to obtain the two limits, namely, 
at very high temperatures and at zero temperature. 
The purpose of this and succeeding papers is to 
produce analytic evaluations of the general ring 
sum formula which will bridge the enormous gap 
between the two known liInits. 

The quantum effects in the ring sum are due to 
quantum statistics and the uncertainty principle. 
At intermediate temperatures the two effects are 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

I J. E. Mayer, J. Chem. Phys. 18, 1426 (1950). 
• M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 

364 (1957). 
a E. W. MontrollandJ. C. Ward, Phys. Fluids 1, 55 (1958). 
• A. Sakakura., "The Connected Diagram EXI>ansion of the 

Grand Partition Function and the Statistical Mechanics of 
the Electron Gas," Ph. D. thesis (1960) at the University of 
Colorado (unpublished). 

6 H. E. DeWitt, J. Nuclear Energy, Part C: Plasma 
Physics 2, 27 (1961). 

inextricably intertwined in the rather complicated 
ring sum formula. In order to reduce the com
plexity somewhat in this paper, we will evaluate 
the ring sum with Boltzmann statistics. Thus, the 
quantum corrections to the classical Debye-Huckel 
result will be due only to the uncertainty principle. 
These quantum corrections are often referred to as 
diffraction effects. 

The fundamental lengths of the electron gas are: 
the classical interaction length{3e2

, the Debye screen
ing length AD = (41r{3e2/p)-1/2, and the thermal 
de Broglie wavelength lI. = 1i({3/2m)1/2 with {3 = 

l/kT. Out of these three lengths, two independent 
dimensionless parameters may be formed. The 
classical parameter is A = {3e2/AD = 211'!/2e3

{f/2//2. 

The second parameter measures quantum effects; 
it is the ratio'Y = lI./AD = (211//2 Iie{3//2m -l/2. The 
Helmholtz free energy for a gas of N electrons in 
volume V containing a continuous neutralizing posi
tive charge background with p = lim N /V as 
N --+ 00 and V --+ 00 is 

{3F = (3Fo - NS(A, 'Y). (1) 
SeA, 'Y) is the contribution from the sum of all 
multiply connected diagrams representing the per
turbation expansion of the canonical ensemble.8 The 

• Multiply connected has the same meaning as irreducible 
in the Mayer cluster expansion. For an account of the irre
ducible or multiply connected diagram expansion for equation 
of state of a classical nonideal gas see T. E. Hill, Stati8tical 
Mechanics (McGraw-Hill Book Company, Inc., New York, 
1956), Chap. 5. For a more recent derivation of the J>6rtur
bation expansion of the Helmholtz free energy including 
quantum statistics see R. Brout and F. Englert, Phys. Rev. 120, 
1519 (1960). If Boltzmann statistics are used in the Brout
Englert method, then all singly connected diagrams vanish. 

1216 
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ring diagrams are the simplest terms in this sum. 
They represent n particles which interact n times 
with momentum lik transferred from one particle 
to the next at each interaction. For the Coulomb 
interaction the nth ring term is the most divergent 
part of the nth virial coefficient. 

In the classical limit (Ii = 0 and hence 'Y = 0), 
the form of S when A « 1 for the electron gas is 

SeA, 0) = A/3 + A2/6 (In 3A - 2C + 11/6) .... (2) 

The A/3 in Eq. (2) is the classical limit of the 
ring sum, the Debye-Hiickel term. The higher terms 
in A may be obtained by using the Meeron nodal 
expa.nsion. 7 The explicit result for the A2 In A 
term was given by Abe.s In a later paper the evalua
tion of quantum corrections to these higher-order 
terms will be discussed. Our task in this paper is 
to evaluate the function of 'Y multiplying the clas
sical Debye term. 

n. THE QUANTUM-MECHANICAL RING SUM 

The general fomi of the quantum-mechanical 
ring sum as derived by summing the ring diagram 
part of nth-order perturbation theory from n = 2 
to co is 

1 J V d
3
k "" . 

NSri". = 2 (211/ ,~'" {47ra(k,2nt) 

- In [1 + 47ra{k, 2rit)]} , (3) 

components are defined as 

}..,(k) = i P 
d-rG(k, 'T)eh:ilr/P. 

If we define }..,(k) = N,8L('A2k2
, 2rit), where L is a 

dimensionless function, the expansion of the Boltz
mann form of the propagator is 

"" -0,.(1-.) _ " 2"ihL ( 2) e -£..Je ,K, (6) 
• __ co 

L,(i) = f dv exp [-lv(l - v) + 2ritv], 

1
·/2 

= (-1) '(2/ K)e -0'/' 0 ds eO' cos (27rts/ K). (7) 

For a multicomponent gas composed of several 
types of charged particles and subject to the elec
trical neutrality condition, L. z,N., the same form 
as Eq. (3) holds for the ring sum, but in place of 
(4) we have 

41ra(k,2rit) = u(k) L z~}.. •. ,(k) 
• 

= ,8u(k) L z~N.L('A~k\ 2rit). (8) 
i 

In the classical limit Ii = 0, one sees from Eq. (7) 
that Lo = 1 and Lt"o = 0, so that for the Coulomb 
potential Eq. (8) reduces to 

41ra(k,O) = (41r~i L Z~Pi)/e = l/A~e, (9) 
• 

where 

41ra(k, 2rit) = u(k)}..,(k) , 

where Eq. (9) defines the usual multicomponent 
Debye screening length. Consequently, the ring sum, 

(4) Eq. (3), reduces to 
u(k) is the Fourier transform of the pair potential. 
For u(r) = e2/r it is 

A,(k) is the tth Fourier component of the pair inter
action propagator. Because of the periodicity 
property of the propagator G(k, ~ - 'T) = G(k, 'T), 

the expansion is a Fourier series. For Boltzmann 
statistics this propagator is 

G(k, ~' - ~") = N(~/27rm)8/2 

Sri". = C;2 J itD k
2 

dk 

X {(kL? - In [ 1 + (kL)2]}' (10) 

The integral in Eq. (10) is (7r/3)Aj)3, and since 
(47rp}..~)-1 = A, we obtain the Debye-Hiickel result 
Sri". = A/3. 

Another form of the ring sum should be men
tioned because of its importance in the physical 
interpretation of the expression (3), and because 
it shows the equivalence of the random phase ap
proximation with the approximation of retaining 
only the ring diagrams in the perturbation expansion 

X J d3p exp -{,8p2/2m + (,8' - ,8") 

X [(p + 1Jt)2 - p2]/2m} = Ne-"' u-,), (5) of the free energy. The summation in Eq. (3) may 
be written as 

where v = (,8' - ,8")/,8, and K = 'Ak. The Fourier 

4~· fa dw coth (w /2) 
7 E. Meeron, Phys. Fluids 1, 139 (1958); E. Meeron and E. ... 

R. Rodemich, ~Oid. 1, 246 (1958). 
• R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959). X {41ra(k, w) - In [1 + 47ra(k, w)]}, (11) 
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POLES OF 
COTH (w Il') 

AT 2 "it 

FIG. 1. Contour 
of integration for 
Eq. (12). 

where the contour C encloses the entire imaginary 
axis vf the complex variable w = '1 + ie. The 
singularities of the integrand are the simple poles 
of coth (w/2) at w = 27rit. The sum of the residues 
from these poles is the result in Eq. (3). The func
tion L(l, w) may be shown to be discontinuous 
across the real axis, so that we have 

a· = lim a(k, 1] ± i leI) 
.-0 

on the static dielectric constant. Quantum effects 
enter both as a modification of the static dielectric 
constant, i.e., for t = 0, and in the appearance of 
contributions from t ;;t. 0 in Eq. (3). The t ;;t. 0 
contributions correspond to the imaginary fre
quencies w, = 27rit/h{3, for which the dynamic 
polarizability is nonzero when h ~ O. 

Equations (3) and (12) are two alternative forms 
to use in the analytical evaluation of Sting (A, ")'). 
The dielectric formulation, Eq. (12), is perhaps the 
easier of the two forms for physical interpretation. 
However, for the purpose of obtaining an analytic 
evaluation of Sring, Eq. (3) is most suitable. For 
later convenience we rewrite Eq. (3) as 

Sring = (A/rr)PC")') 

= (A/1I")[PoC")') + 2 ~ P.(-y) ] ' 
(13) 

P.(-y) = 1"" x2 dx{x-ZL tC")'2X2) 

- In [1 + x-2L.(-y2X2)]} , 

Thus, when the contour C is deformed as shown in where the integration variable is x = k")..D. As 
Fig. 1, Eq. (11) may be written as an integral noted from Eq. (10) the classical limit of Pc"),) 
along the real axis: is PoCO) = 11"/3. 

1 J"" ~ = 411" _"" d1] coth (1]/2) 

(12) 

The integration variable 1] in Eq. (12) should be 
thought of as (3hw where w is the oscillation frequency 
of a density fluctuation in the medium. 

The quantity 411"a(k, (3hw) is the generalized, tem
perature-dependent polarizability in the dynamic 

m. PROPERTIES OF THE FOURIER COMPONENTS OF 
THE PROPAGATOR 

In order to perform the integration giving pte")') 
as defined by Eq. (13), several properties of the 
Lt(K2) functions are needed. For t = 0 the function 
given by Eq. (7) may be expressed in terms of 
Erfi (a) = f~ ds e'> and it has the following series 
expansion convergent for all K: 

LoCi) = (2/K)e-·' /4 Erfi(K/2), 

= E (-1t(l/2t. 
,,-0 (2n + 1)!! 

(14) 

dielectric constant of the medium, e(k, w) = For real K « 1 the following asymptotic expansion 
1 + 411"a(k, (3hw). Englert and Brout have developed is valid: 
a dielectric formulation of the plasma free energy 2 1 1 (2m - 3)!! 
in the framework of the random phase appro xi- Lo(K) = (l/2) + (l/2)2 + ... + (l/2)'" . (15) 
mation.9 They obtained Eq. (3) by calculating from 
the average of the square of a density fluctuation 
defined by pq = Ep a;+qap with q = hk. From 
their formulation it is clear that Eq. (12) is a special 
case of the fluctuation dissipation theorem. 

With the interpretation of 411"a(k, w) as the 
polarizability of the medium, one sees that the 

Similar results for L.(K2
) when t ;;t. 0 are easily 

obtained with the help of the differential equation 
satisfied by L. ( K2) : 

K ddL • = 1 - (1 + !l)L. _ 2(11"!)2 L., 
K K 

(16) 

classical limit form of the free energy depends only which may be verified by differentiating the integral 
9 F. Englert and R. Brout, Phys. Rev. 120, 1085 (1960). definition Eq. (7) and integrating by parts. The 
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series expansion of L,{K2
) obtained by solving Eq. 

(16) is 

L,V) = (7r
1
t)2 (i/2) - (:~~4 V/2? 

[
1.3.5 1 ] 2 a + (7rt)6 - (7rtt (K /2) -

The coefficient of (i/2)" in Eq. (17) is 

{-lr+1 L (-l)'(n - 8 - I)! 
,-0 8! (n - 28 - I)! 

(17) 

(2n - 28 - I)!! 1 
X (28 + I)!! (7rt)2n-2. 

Similarly, the asymptotic expansion for large real 
K is found to be 

(18) 

where the coefficients dm satisfy the recursion relation 

dm + l = (2m - 1) dm - (7rt)2 dm-l' 

As functions of a complex variable z = K + iy, 
the L, (i) behave very differently on the imaginary 
axis. With z = iy the L, function becomes Lo{ _ y2) = 
(2/y)eN

'
/4 Erf (y/2) , an increasing exponential for 

y» 1. Using the second form of Eq. (7), the asymp
totic form of L, ( - y2) for t ~ 0 when y » 1 is found 
to be 

(19) 

The L, (l) functions may be reasonably well 
approximated on the real axis with such forms as 

Lo ::: 1/(1 + ai) (22a) 

L, "-J 2i/[ / + (27rt)2]. (22b) 

The constant a must be 1/6 in order to satisfy (20) 
and (21) to O(i). These approximate forms are, 
of course, grossly wrong off the real axis. They 
have pole singularities in the complex plane whereas 
the L,(i) are entire functions. 

In order to evaluate P,{",) for large", and t ~ 0 
the following form of L, (i) as an expansion in 
powers of l/7rt is useful: 

(23) 

where u = K2/27rt. Equation (23) is obtained from 
the series expansion of the L.(i) function, Eq. (17). 
It reduces to Eq. (17) for u « 1 and to the asymp
totic expansion, Eq. (18), for u » 1. The first term 
of Eq. (23) is the approximate form Eq. (22b). 

The first term of P.(",) as defined by Eq. (13) 
is 0(",-1) and the coefficient may be evaluated 
exactly by using the integral representation of 
L.{K2

), Eq. (7). The result is Two sum rules satisfied by the L, functions should 
be mentioned. From the Fourier expansion of the 
pair propagator Eq. (6), we have for v = 0 i'" dKL,{i) = i'" dK f dv exp [ -K2v(1 - v) + 2mtv] 

(20) 

Also from the relation 
fJ fJ' 

1 d{3' 1 d{3"G2{v., (3' - (3") = ! L x~, 
o 0 , 

we find for Boltzmann statistics 

L L~V) = 11 dve-2K
·.(l-.) = L o{2i). (21) 

, 0 

The relation Eq. (21) is a consequence of the 
separability of the kinetic energy of two particles 
into center-of-mass and relative-motion kinetic 
energies, i.e., pU2m + p:/2m = p2/4m + p2/m 
where P = (PI + P2)/2, P = PI - P2' There is no 
simple counterpart to Eq. (21) when quantum 
statistics apply. 

= 7r~2 10'" [v(t~T:;;1/2 
= (-1)'(7r3/2/2)Jo(7rt) 

1 (7r)1I2 { 1 12.3
2 

} ="2 t 1 - 87rt - 2!(87rt)2 + .... 
(24) 

If one evaluates the above definite integral using 
Eq. (23), the asymptotic expansion of the Bessel 
function given in the final form of Eq. (24) is ob
tained directly. 

IV. METHOD OF INTEGRATION 

Weare now ready to consider the evaluation of 
the integrals P. in Eq. (12). When t ~ 0 we note 
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FIG. 2. Graphical solution of Eq. (23). 

that x-'L,(-/x') is finite at x = 0, and has the 
value 1/2 (1I"t)'. Thus, it is possible to expand the 
logarithm in powers of x-'L, and integrate term 
by term. Po is more troublesome, however, because 
x-'Lo is infinite at x = O. There are several ways 
to perform integrals of the type Po with any function 
I(x') in place of Lo(-/x2

) subject only to the re
quirement that I(x') vanishes at co on the real 
axis. The simplest method is an appropriately chosen 
contour. The choice of the contour is dictated by 
the location of the roots of the argument of the 
logarithm in the integrand of Po, namely, the roots 
of 

(25a) 

with z = x + iy. It may be shown that this trans
cendental equation has only two roots. These roots 
are pure imaginary when -y is small, so that with 
z = iy we must solve: 

y2 = Lo( _-y2y2) 

= (2/'Yy) exp (-y2y2/4) Erf (-yy/2). (25b) 

The graphical solution obtained by plotting both 
sides of Eq. (23) is shown in Fig. 2. 

The smaller root e may be calculated analytically 
in powers of -y2 with the Lagrange inversion formula; 
it is 

., 
~2 = 2: an-y~(,,-l) 

.. -1 (26) 
2(,,-1) (d )"-1 

~ 7 du Lo( -url .. -o. 

No such expansion is possible for the upper root ",2, 

which is the solution of ",2 = (1I"1/2/'Y",) exp (-Y'l)2/4 
when -y « 1. The approximate value is 

(-y",)2 = 4 In 1/'Y2 - O(ln In 1/'Y2). (27) 

In the classical limit the roots are e = 1 and '12 = co. 

As -y becomes larger, the two roots move toward 
each other and finally coalesce when -y2 = -y~ = 
2.042 .. ' . This occurs when y' = y! = 2.555 .. , , 
the point at which Lo( _-y2y2) is tangent to the 
straight line at 45° as shown in Fig. 2. For -y > -y., 
the two roots move off the real axis and have the 
form ±h + i~I' The asymptotic form of the roots 
for -y » -Y. may be found by using the asymptotic 
expansion Eq. (18) for L o(z2). This expansion is 
valid for z = Rei' with -11"/4 < 8 < 11"/4 and 
311'/4 < 8 < 511"/4. The roots are asymptotic to the 
underside of the rays at 11"/4 and 311"/4, and are found 
to be 

z = C2-y2)1/4(±1 + i)/V2. 

The evaluation of Po(-y) is accomplished with 
the use of 

t 1. dzi{z- 2LoC-y2i) - In [1 + z-'Lo('Y2 t')]} 

around the contour shown in Fig. 3. The branch 
cuts are made from 0 to i~, and from i", to 00. The 
upper horizontal piece of the contour may be taken 
anywhere between i~ and i", when -y < 'Y c' As the 
contour goes around the point i~, the argument of 
the logarithm has a phase change of 2?ri, and con
sequently the contour segment from 0 to i~ gives 

-!2ri 10 

d(iy)(iy)2 = (11"/3)(. 
i~ 

In the classical limit, -y = 0; this is the Debye
Huckel result. 

The remaining contribution to Po comes from 
the straight line portion of the contour at height iy. 
Along this segment it is justified to expand the loga
rithm in powers of z-2L o(-y2Z2) since Iz-2L o("y'l)1 < 1. 

i Y 

~~ ixi 

! 

FIG. 3. Contour of integration for the evaluation of P.( 'Y ) 
when 'Y < 'Y c· 
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We obtain 

Po('Y) = L" dxLo('Y2X2) + (n/3)E3 

(-1)"'Y2
(1.-I) 1 f"'+(Vd. L~('Y2Z2) - L dz 2n-2' 

n-l n 2 -CICI+i" Z 

Integration by parts gives 

f ",+iY. d. L;('Y2Z2) 
dz 2.-2 

-OO+lY Z 

1 f'" d ( d )2n-3 
= (2n - 3)! _'" ex .: iy) dx L~('Y2(X + iy)2). 

This step is justified for any finite y since Lo(-YV) -+ 0 
as x -+ ±i co. Finally, the straight-line portion of 
the contour at height iy may be pushed down to 
the real axis and we obtain 

( _1)"'Y2,,-a 
Po('Y) = (7f/3)r + 2: (2 - 3) , ,,-2 n n . 

x fa'" dKK (tJ 2 .. -a L~( l) . (28) 

For t r6 0 the logarithm in P, may be expanded 
in powers of x-2L,('Y2X2), and after integrating each 
term by parts 2n - 3 times one obtains the same 
form as Eq. (26), but without the (7f/3)Ea, i.e., 

Ph) = 2: b"t'Y2n-a, 
.. -2 

with 

(-1)" 1'" dK (d )2 .. -a .. 2 
b", = n(2n _ 3)! 0 -; dK LI(K). (29) 

Consequently 

P('Y) = (7f/3)r + 2: bn'Y
2n

-
3, (30) 

.. -2 

with 

It should be noted that the method used here 
for the evaluation of Po('Y) is not limited to Boltz
mann statistics. The final results Eqs. (26) and (28) 
apply also to the ring sum with quantum statistics. 
In place of the Lt(l) functions one must use the 
more complicated expressions for the Fourier com
ponents of the pair interaction propagator with 
statistics included. The evaluation of the ring sum 
with quantum statistics will be considered in a 
later paper. 

The integrand of Po('Y) is an analytic function 
of "/. The function Po('Y) obtained by integration 
is not analytic in 'Y2 since the result, Eq. (28), 

has both odd and even powers of 'Y. The odd powers 
of'Y must be interpreted as ('Y2)lf2. The portion of 
Po('Y) analytic in 'Y\ namely, (7f/3)~3, obviously 
comes from the lower of the two roots of Eq. (25b). 
The nonanalytic portion of Pe('Y) comes from the 
horizontal piece of the contour at height iy above 
the real axis. It may be suspected that this portion, 
2: bno'Y2n-a in Eq. (26), has something to do with 
the upper root at z = iT}. In order to clarify this 
point, one notes that the contour used for the 
integration of Po('Y) works also when LO('Y2:Jl) is 
replaced by any function f('Y2X2), entire or not, 
which vanishes as x -+ co. For example, if we use 
the approximate form Eq. (22a) , i.e., f('Y2X2) = 
1/(1 + 'Y2X2

), we find 

fa'" x2 dx{X- 2t('Y2X2
) - In [1 + x-2 f('Y2x2)]1 

3 2 ( _1)"'Y2n-a 
= (7f/3)M'Y) + t; n(2n - 3)! 

X 1'" dK (~)2"-3r(K2) 
o K dK ' 

where E~ and ~~ are, respectively, the lower and 
upper roots of y2 = t( _'Y2y2) , namely, 

(1/2'Y2)[1 ± (1 - 4,l)1I2] . 

The second line of Eq. (29) is the result obtained 
with the contour in Fig. 3, and the third line is 
the exact result. The series in 'Y2n-a in the second 
line is seen to be an expansion of ~('Y2) beginning 
with the O('Y) term. 

Similarly P,('Y) for t ¢ 0 may be evaluated 
approximately by using the approximate form Eq. 
(22b) for Lt ('Y2X2

). The result is 

1 
{ 

1/2 2 

P()""- ~ 
I 'Y = 'Y3 2tl/2 

21/2 } - T [(2'Y2 + 47f2 f)3/4 - (271"t)3/2] 

_ ~_ ~ (-I)v .. - a (n - i)(n - ¥-L:..:.l 
- 23/ 4 ~ (21/2 t)2" 3/2 , 

n-2 71" n. 
(32) 

One sees from the second form of Eq. (32) that the 
series expansion of PI('Y) converges for 'Y < 21/1I71"t. 
The estimate of b"l obtained from Eq. (32), however, 
is poor for small t because the approximation for 
Eq. (22b) underestimates Lt('Y2X2) in the region 
'YX '" 7ft. For 'Y » 21/271"t the first form of Eq. (32) 
is fairly good. The coefficient of the O('Y-1

) term 
is correct to O(C1

/
2) as may be seen by comparison 
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with the exact result Eq. (24). The coefficient of 
the 0('Y-3/2) term is exact for all values of t. 

V. EXACT RESULTS FOR BOLTZMANN STATISTICS 

The coefficients an defined by Eq. (26) for the 
expansion of ~2('Y2) are relatively easy to evaluate 
for small n since they are obtained by differentiation. 
The coefficients b .. t in Eqs. (29) and (30) are more 
difficult to evaluate since integration is required. 
Exact results for an and bn may be calculated for 
small n, but for large n only asymptotic expressions 
can be obtained. 

The expression for an is obtained with the use 
of the integral definition of the Lo(l) function, 
Eq. (7). The result is 

1 (d )"-1 an = n! du L~(-u)I,,_o, 

1 (d )10-1 II f = - - ... dVI'" dv 
n! du 0 " 

.. -I 11 f = 22~-I)n! 0 '" ds1 • •• dsn 

X [1 - (s~ + .,. + s!)/n]"-I. 

The final form of an is obtained with the change of 
variable v = 8/2 + !. The mUltiple integral in this 
final form is over the volume of an n-dimensional 
cube. No exact answer is known, but in the Appendix 
it is shown that the multiple integral is asymptotic 
to O~ where 

00 = Ao(l - cf» = 0.7178 ... , 

cf> = Ad Ao - In (1 - At! Ao) = 0.0389 ... , (34) 

Using this result, Eq. (30), and the 
proximation for n! gives 

Stirling ap-

4 1 (eOo)n 
an = (211")1/2 na/2 ""4 (35) 

for large n. Including the exact values for the first 
few a", the result for e('Y2) from Eq. (24) is 

r('Y
2

) = 1 + ~'Y2 + ;5 'Y4 + 1;0 'Y
6 + ... 

4 'Y2 (10-1) 

+ (2 )1/2 3722;; + "', 11" n 'Yc 
(36) 

In a similar fashion the coefficient b". 
(29) is found to be 

from Eq. 

(_1)"+1 1"" dK (d )210-3 b - - -
.. t - n(2n - 3)! 0 K dK 

X f ... f dV 1 .,. dv" 

X exp [211"it t Vi - K2 ~ vi(l - Vi) ] 

(37) 

101 11"1/2 2"Cn - 2) !n,,-3/2 
= (-1) 2""" nC2n - 3)! 

X 11 ... f ds! ... ds .. 
-1 2" 

[ 
~J1O-3/2 

X exp (1rit L: s;) 1 - n Si • 

The second form of Eq. (37) is obtained by inter
changing the order of the integrations and using 

1"" dK (-1:.)2,,-ae_a •• = (_I),,+11I"1/222( .. -2\n - 2) !an-a/2. 
o K dK 

To obtain btl we sum over all t in the first form of 
Eq. (37) and use the periodic delta function 

"" L: exp (21rit L: Vi) = oCr - L: Vi), 
t ... -co 

where r can, in general, be any integer. In the unit 
volume hypercube over which the multiple inte
gration in Eq. (37) is to be performed, the possible 
values of rare 1, 2, ... ,n - 1. Hence for b" we find 

11"1/2 2nCn - 2)! 10-1 11 
= - L: '" dsl • •• ds" 

2 n(2n - 3)! r~l 0 

X oCr - n/2 - ! L: s;) [n - L: s~]"-al2. (38) 

The multiple integral in Eq. (37) for blOt is the 
same type that occurred in the an as given by Eq. 
(37). The difference in the exponents, n - 1 in 
Eq. (33) and n - ! in Eq. (37), is of no consequence 
when n --? (Xl. Using the estimate of the multiple 
integral in the Appendix the result for bno is found 
to be 

11"112 Cn - 2) !n"-5/20~ 
h"o = 2""" (2n - 3)! 

(39) 

where 'Y! = 4/eOo = 2.042 .... The series expansion For t ;e 0 the method of the Appendix gives 
Eq. (36) for ~2 is thus convergent for 'Y2 < 'Y!. (_1),,(1+1) (2/e1l"2t2)n for the multiple integral and 
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is valid when n1/2/,rrt > 1; hence the approximate 
result for small t is 

(40) 

When nl/2/,rrt < 1, then b", may be calculated by 
using the expansion, Eq. (23), for L,(l) with the 
result: 

X {I _ .1 (3n - 2) r(i)r(n - 1) ... } 
7rt (n + 1) rC!) r(n - !) 

(-l)"r(i) 1 
25/4n7/4 (21/"~7r-'t):-;;2n=-oa/""2 

X {I _ 3r(i-) n 1
/

2 
••• } 

rC!) 7rt . (41) 

It is clear from Eqs. (40) and (41) that for large n the 
contribution from t ,= 0 vanishes. Thus the nonstatic 
part in the ring sum, i.e., for w, = 27rit/li(3 ~ 0, 
affects only the coefficients b" for small n. 

Exact results have been obtained for n = 2 and 3. 
The evaluation of b2 is very easy, essentially because 
of the sum rule for L 2(l), Eq. (21). The result is 

The value of b20 obtained from Eq. (37) is 

b20 = (7r
3/2/24)(5 - 2V2) = 0.543. 

(42) 

(8 )
1/2[7r 27r a 'Y2

(n-1) 

- 7r 25 'Y + -35 'Y + .,. + 3/22,; + 
n 'Yc 

... J. 
(44) 

The function P('Y) decreases monotonically from 
7r/3 as 'Y increases. The expression (39) for P('Y) 
is valid for 'Y < 'Y c for which the two series converge. 
At'Y = 'Yc the two roots e and 1/

2
, which determine 

the value of Po('Y) , coalesce and the contour inte
gration method fails. 

The coefficients b2 and a2 have previously been 
obtained by Sakakura in his thesis4 and more 
recently by Stephen.1o The function P('Y) decreases 
monotonically from 7r/3 as 'Y increases. Equation 
(44) is valid when 'Y < 'Y. for which the two series 
converge. At'Y = 'Yo the two roots, e and 1/

2
, which 

determine the value of PO('Y) , coalesce and, there
after, become complex. The contour integration 
method then fails, and the form of P('Y) for large 'Y 
must be obtained by a different method which is 
described in the next section. 

The methods used to obtain Eq. (44) for the 
single-component gas may be easily extended to 
the ring sum for the multicomponent gas. The 
coefficients an and b" become functions of the ratios 
of the particle masses. Consider a two-component 
gas with electrons of mass m. and charge z., and 
ions of mass m; and charge Z;. Electrical neutrality 
requires that Z.P. + ZiP; = O. The poiarizability 
of this plasma using Eq. (8) is 

Thus, for n = 2 the contribution from nonstatic 47r(~ = [z!a.L.('Y~x2) + z:a;L.(-y~x2)]/(l)K\ (45) 

terms, i.e., all b2 • with t ,= 0, is about 10.5%. The where 
result for ba was obtained after a great deal of 
elementa,ry and tedious integration; it is x = kAD' 

X [vl(l - VI) + v2(l - V2) + va(l - va)r/2
, 

= 27127ral2/35 = 0.259. (43) 

'Y. = 'AeIAD, 

ai = pJp, 

The particle masses occur only in the thermal wave
lengths, 'A. and 'Ai' The multicomponent form of 
Eq. (13) when evaluated is 

It appears that as a consequence of the complicated 
geometry of the hypercube, the labor required to 
evaluate bn exactly increases with n much faster 

th~::~:::t~~!y~esults of this section gives the P('Y" 'Yi) = (7r/3{ 1 + t; an(m./mih!(n-ll J/2 

complete result for P('Y) as 

P('Y) = (7r/3) 

X[l+t'l+ 
23/2 ')'2 in-1) ••• J3/2 

+ (27r) 1/2 n3/2'Y!n + 

(46) 

10M. J, Stephen, Proc. Roy. Soc. (London) A265, 215 
(1962). 
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with 

The explicit results for a2 and b2 are 

a2(m.!mi) = (l/6)[z!a~ + z~z~a.a;(l + m./m;) 

+ z!a~m./m;]/(l?, 

VI. THE ASYMPTOTIC EXPANSION OF P('Y) 
FOR'Y »'Y. 

(47) 

When I' is very small most of the ring sum con
tribution to the free energy comes from the static 
polarizability, i.e., w, = O. As increases the con
tribution from the nonstatic part, w, ¢ 0, also 
increases and becomes dominant when I' » 'Y c' 

The asymptotic form of pcI') for large I' may be 
obtained correctly by summing the approximate 
form of P,C'Y), Eq. (32), over all t. However, in order 
to obtain the asymptotic expansion in powers of 'Y 

and hence the low-temperature form of F rlng in 
'powers of kT, we shall use the Mellin transform 
method suggested by Iwatall for the evaluation of 
P,('Y) and finally P('Y). 

In terms of the variable u = K
2/21(t Eq. (13) 

for P, (I') may be rewritten as 

P ( ) 
_ (21(t)3/2 1'" 1/2 d 

I'Y - 2 3 U u 
I' 0 

X {'Y2LI _ In (1 + 'Y2L
.)} 

21(tu 21(tu 

_ (21(t)3/2 r (-) ds _1(_ 
- 2'Y3 J c 2m s sin 1(S 

X r UI/2 du ('Y2L.),. (48) 
Jo 21(tu 

The contour C for the s integration runs from 
CT - i ex> to CT + i <Xl with 1 < CT < 2. If the s contour 

11 G. Iwata, Progr. Theoret. Phys. (Kyoto) 24, 1118 
(1960). 

is closed to the right then one obtains the series 
expansion of P,(-Y) in powers of 'Y appropriate for 
'Y < 21f21(t, and if the contour is dosed to the left 
one obtains the asymptotic expansion of P,('Y) in 
inverse powers of 'Y appropriate for 'Y > 21/21(t. 
By using Eq. (23) for L. (i) expanded in powers of 
I/1(t the u integration in the second form of Eq. (48) 
may be performed to give 

!. (L){rw r(s - I) 
2 21(2t2 res) 

_ s(3s - 2) r(i)r(s - !) + ... }. 
1(t r(s + 2) 

(49) 

With s equal to positive integer values, one obtains 
Eq. (41) for b", from Eq. (49). 

The summation over integers t may now be done 
exactly in terms of the zeta function, 2:1-1 r' = r(z), 
to give 

P."o('Y) = 2 2: P.(-y) 
I-J 

X {rmr(s - l)r(2s - !) 
res) 

s(3s - 2)r(i)r(s - 1)1"'(2s - t) 
- 1(r(s + 2) 

+ S(9S3 + 24s3 
- 58s + 7) 

21(2 

X r(i)r(s + !)t(2s + t) + ... }. (50) 
r(s + 4) 

Because of the appearance of the singularity of the 
zeta function at s = t the s contour must now cross 
the real axis in the interval i < CT < 2. The integrand 
of Eq. (50) has simple poles at s = t 1, 1, 1, 0, 
-1, - 1, ... , and consequently the asymptotic 
expansion has the form 

CI c~ c; c~ 
PI"o = 1/2 + - + 372 + 672 + '" , 

'Y 'Y I' I' 

where the primes on the coefficients c;, c~, 
indicate the absence of the contribution from t = O. 
The asymptotic expansion of Po('Y) may be found 
by writing Lo(i) in a form analogous to Eq. (23) 
for L t (K2), namely, 

2 1 Z2 2Z4 - 2113 
Lo(K) = 1 + l/2 + (1 + z2/2) 3 + (1 + z2/2)6 + ... 
from which we obtain 
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1 f (-) as 11" "1
2
, 

PO('Y) = 3" -2-·- --.-- 2,-1/2 
"I e 11"'/, S SIn 1I"S 

{
rei - s)r(2s - i) 

X res) 

The coefficient CI is obtained as the residue of the 
first term in the brackets of the integrand of Eq. 
(50). The coefficients Ca = c~ + c~', etc., have 
contributions from terms in the integrands of both 
Eqs. (50) and (51). The results are 

+ 2sr(~ - s)r(2s - !) + ... }. 
r(s + 2) (51) _ 2

3/4 
r(i)r(!) = 0806 

CI - 5 r(~) . 
From the location of the simple poles in the inte
grand of Eq. (51) at s = 1, i, i, 0, - i, ... one 
sees the form of the asymptotic expansion of Po('Y), 
and by oalculating the residues at these poles the 
result is obtained as 

C~' c~' c~' 
P o( "I) = - + 372 + 672 + ... 

"I "I "I 

11"3/2/2 25/411"/3 11"/2114 
= -- - -aJ2 - -g;>2 + .... (52) 

"I "I "I 

The residue at s = 1 giving c,' is given by Eq. (24). 
The coefficients CI, c" c~, etc., are obtained by 

calculating the residues of the integrand of Eq. (50). 
We will first consider the residue at 8 = 1 which 
may be obtained exactly with the help of Eq. (24): 

c~ = 11"1/2 [ rm - r~~ - ... ] 

= 1I"1/2r(!) + 11"3/2 

x f (-I)'[Jo(1I"t) - (-I)'/1I"t1l2
]. (53) 

'-I 
The t summation in c~ may be converted to a definite 
integral by using Eq. (24), the first term of the 
L,(l) expansion in Eq. (23), and the sum rule 
Eq. (20). One finds 

11"3/2 L: (-lnJo(1I"t) - (-I)'/1I"tI/2] 
I-I 

= 1'" d f ~ L,(l) - Lo(l) - 2 L: 4 +2(~ t)2} 
o "l'--a> '-I K 11" 

_11"3/2/2 + f dK{ 1 - (coth l/2 - 2/l)} 

_11"3/2/2 - 1I"1/2r(!). 

Hence c~ is exactly 

C~ = _11"3/2/2 (54) 

and the complete coefficient of the "I-I term of P('Y), 
C2 = c~ + c~', is identically zero. 

The asymptotic expansion of P('Y) is obtained by 
adding the results for Po('Y) and P,,.o('Y) and has 
the form 

(55) 

_ 2
5/4 ~ r({)r(!) = 0158 

Ca - 3 16 rei-) . 
_ 2

7/4
375 r(i)r(!) = 0485 

C5 - 1 512 r(¥) .. (56) 

From the form of the integrands of Eqs. (50) and 
(51) it is clear that there are no terms of order 
"I-2m in the expansion of P('Y). From the fact that 
C2 for the "1-1 term is zero, it is conjectured that all 
the coefficients of terms of order 'Y-<2m+1) are zero, 
but a proof has not been found. 

The asymptotic expansion of P('Y) for large "I 

is of interest for low temperature, particularly if 
there is a density region for which the ring sum gives 
the dominant contribution to the free energy as it 
does in the case of Fermi statistics. Our result 
Eqs. (55) and (56) would then be analogous to the 
correlation energy and heat capacity for the high
density electron gas at zero temperature as ob
tained by Gell-Mann and Brueckner.2 The free 
energy may be expressed in terms of the standard 
parameter r, defined by 

where ao is the Bohr radius. The dimensionless 
parameters A and "I in terms of r, are 

A = 2· 6112(Ryd/kT)3/2r~a/2 

"I = 6112(Ryd/kT)r~3/2 
(57) 

and the ring contribution to the free energy becomes 

FriDc/Ryd = - N(kT /Ryd) (A/1I")P('Y) 

N 
2·61/4 { -3/4 + ~ f kT t3/4 

- -11"- clr, 61/2 \Ryd{' 

+ ~ (l~dyr:/4 + ... }. (58) 

The correlation energy obtained from Eq. (58) with 
the relation E = (a/a{3)({3F) is 

ErlDc/Ryd 

= N{ -0.803r;3/4 + 0.081(kT/Ryd)2r:/4 ... }, (59) 

and the heat capacity is 
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G = Go + Gring 

= Nk{l + O.162(kT /Ryd)r:/' ... }. (60) 

The first term of Eq. (59) has also been obtained 
by Stephen for the gas of distinguishable electrons. 12 

It should be noted that these results predict that 
the correlation energy diverges in the high-density 
limit, r. ~ 0, whereas the heat capacity contri
bution from the ring sum goes to zero. 

The pressure obtained from Eq. (58) with the 
relation PV = p(ajap)«(3F) is 

PV = (Po + P rin.) V = N{kT - Ryd ~~4 [Clr;3/4 

- 6~~2 ~;d~!/4 - ~ (li;drr~/4 ... ]} 

= .iVRyd { -0.201r.-314+(kT /Ryd)(1 +0.0161r!/4) 

- 0.060(kT /Rydlr!/4 ., . }. (61) 

The r;3/4 term in Eq. (61) is dominant and conse
quently this pressure expression is necessarily nega
tive under the condition of validity of the asymp
totic expansion of P('Y) , namely, 'Y » 'Ye. At zero 
temperature, the pressure is 

P/ p = iEring/N = -O.201r;3/4 Ryd. (62) 

Thus if the ring sum approximation, i.e., the random 
phase approximation, is valid for Boltzmann sta
tistics (and also for Bose statistics) at high density 
and zero temperature as it is for Fermi statistics, 
then the gas of distinguishable charged particles 
should collapse. 

VU. CONCLUDING REMARKS 

The main result of this article is Eq. (44) in which 
the diffraction corrections to the classical ring sum 
are exhibited as an expansion in powers of 'Y. The 
first thing to notice about this result is that the 
diffraction corrections involve both even and odd 
powers, hence even and odd powers of Ii. This 
result apparently contradicts the form of the 
Wigner-Kirkwood (WK) expansion13 which is com
monly used for the calculation of diffraction cor
rections at high temperature to the equation of 
sta te of nonideal gases. a According to the WK 

12 M. J. Stephan [Proc. Phys. Soc. (London) 79, 994 
(1962)], suggested the use of the Mellin transformation for the 
evaluation of the ring sum at zero temperature. Since he used 
the approximation Eq. (22b) for L,(k') and approximated the 
t summation by an integral he could obtain only the first term 
of the asymptotic expansion of P( 'Y). 

13 E. P. Wigner, Phys. Rev. 40, 747 (1932); J. G. Kirkwood, 
ibid. 44, 31 (1933). 

14 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Mo
lecular Theory of Gwse8 and Liquids (John Wiley & Sons, Inc., 
New York, 1954), Chap. 6. 

expansion, the diffraction corrections appear to 
involve only even powers of Planck's constant. It 
was pointed out in a previous paper, however, that 
for potentials with a l/r singularity at the origin, 
the nonanalytic form (1i2)1/2 is to be expected.15 

The reason is that for the l/r potential, the param
eter of smallness for the expansion is ('A/ (3e2) 2 which 
depends linearly on the temperature. Since the 
parameter of smallness diverges at high temperature, 
the WK expansion breaks down. 

It was also pointed out in the previous paper 
that the quantum-mechanical ring sum for the 
Coulomb potential is rather similar in form to the 
second-order perturbation term of the second virial 
coefficient for the screened Coulomb potential, 
(l/r) exp (-r/ro). The classical form of this second
order term comparable to Sring is 

The result with quantum corrections 
Foldyl8] is 

[Eq. (32) of 

pB22 = (7r/2) pro «(3l) 2 F('Y\) , 

F('YI) = [1 + 'Yle'Y,'/4 Erf ('Yl/2)] 

- (7r1/2/2hle'Y"'\ 

(63) 

with 'YI = 'Afro, 'A = Ii «(3/2p.) 1/2, and p. = m/2. 
The function F('YI) for the quantum corrections to 
second-order perturbation theory should be com
pared with (3/7r)P('Y) for the quantum corrections 
in the ring sum. In both cases the functions may 
be written as two power series, one with even 
powers of 'YI and 'Y, respectively, and the other with 
odd powers of 'YI and 'Y. Thus, the function in square 
brackets in Eq. (63) has the expansion: 

1 2 + 1 4 + + ('YU2)" + 
1 + 2 'YI 12 'YI ... 2(2n + I)!! 

which should be compared with the expansion of 
~3('Y2) from Eq. (36). The comparison of the quantum 
corrections to pB22 with those in Sring has been 
pointed out because second-order perturbation 
theory is sufficiently simple that the quantum cor
rections, F('Y\), to pB22 , could be obtained in terms 
of known functions. The quantum corrections, 
(3/7r)P('Y), to Sring, however, could only be evaluated 
as the series expansion, Eq. (44). 

The functions F('YI) and (3/7r)P('Y) which give 
the quantum corrections to pB22 and Sring due to 
the uncertainty principle are rather similar in form 

15 H. E. DeWitt, J. Math. Phys. 3, 1003 (1962). 
16 L. L. Foldy, Phys. Rev. 124, 649 (1961). 
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at least for small 'Yl and 'Y. In the classical limit one 
is considering charges localized at points. With 
Ii ~ 0, however, the wave functions of the particles 
describe packets that extend a distance" = Ii/ {p) = 

1i/(2mkT)1/2 around each charge center. This spread
ing of the point charges over a finite region causes 
the functions FC'Yl) and C3/7r)PC'Y) to be mono
tonically decreasing as the temperature is decreased. 
The differences between FC'Yl) and (3/w-)P('Y) be
come apparent for large 'Yl and 'Y. The power series 
expansions for the two pieces of FC'Yl) have radii 
of convergence of co, whereas the power series 
expansions of the two series for (3/7r)PC'Y) converge 
only for 'Y < 'Y c' For 'Yl » 1 the asymptotic form of 
F('Yl) is 2/'Y~, while the asymptotic form of (3/7r)PC'Y) 
is (3cl / 7r) /'Yl

/
2

• In both cases these asymptotic 
forms lead to nonzero contributions to the free 
energy at zero temperature. 

The ring sum contribution to the free energy 
of distinguishable charged particles at low tempera
ture is of interest for comparison with similar 
results for charged bosons. At zero temperature 
charged particles obeying either Boltzmann or Bose 
statistics must have the same ground state energy 
since all particles are in the lowest momentum state. 
Thus the r;3/4 term of Eq. (58) may be compared 
with recent results for the correlation energy of 
charged bosons. The excitation spectra and hence 
the heat capacities for the two kinds of statistics 
are presumably quite different. Foldy, by using a 
method due to Bogoliubov, has obtained the follow
ing result for the ground state energy of high density 
bosons16

: 

E/N Ryd = -0.803r~3/4 + 0.424 

and more recently Girardeau using a variational 
method has obtained Foldy's result, but with an 
additional term which diverges at high density, 
lIn C1/ra).17 Since the r;3/4 term obtained by Foldy 
and Girardeau is identical with our result, Eqs. 
(58) and (59) at zero temperature, it is clear that 
their approximation in the use of the Bogoliubov 
method and the variational method respectively 
is equivalent to the ring diagram sum. The In r. 
and the constant term obtained by these authors 
cannot possibly come from the ring sum, however. 
One may then ask what diagrams in the low tem
perature expansion of the partition function would 
give a contribution of order In r. + const to the 
ground state energy. At high temperature and low 
density the correct choice is the first term of the 

n M. Girardeau, Phys. Rev. (to be published). 

Meeron nodal expansion, i.e., the watermelon dia
grams evaluated by Abe to give the A2 In A in 
Eq. (2). Assuming the Meeron nodal expansion 
to be valid also at low temperature and high density, 
the same choice of diagrams would have to reduce to 
the asymptotic form (A2/'Y2)[a In (A/'Yl

/
2

) + b] in 
order to give the In r. + const obtained by Gi
rardeau. 
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APPENDIX. EVALUATION OF THE MULTIPLE 
INTEGRAL IN an AND b .. 

For the evaluation of the coefficients an and bn, 
we need the asymptotic value for large n of the 
multiple integral: 

In. = (1/2") {I '" J dS l ••• dSn 

X exp (7r'it L s,)[l - L sUn]", 
• (AI) 

" 
... ds" II cos 7rts. 

X [1 - L s~/nr. 

For a" we need only t = 0 and the exponent of the 
square bracket in the integrand is n - 1; for b" 
we need all values of t and the exponent is n - !. 
In the limit of large n, however, the exponents 
n - 1 and n - ! may be replaced with n. 

In order to obtain the asymptotic value of I"., 
one hopes that the integrand will factor into n 
products as n ---+ co, by using 

n 

lim (1 - L s~/n)" = II e-·'·. (A2) 
n_CO i 

If this factorization were correct, then (AI) for 
t = 0 would be 

8~, (A3) 

with (Jo = Erf (1) = 0.74683. Unfortunately, this 
evaluation is only a first approximation to 80, 
because the exponential approximation Eq. (A2) 
fails in one of the 2" corners of the hypercube over 
which the multiple integration in Eq. (AI) is to 
be performed. As one approaches the corner at 
(1,1, '" , 1) the integrand becomes (1 - n/n)" = 0, 
whereas the exponential approximation, Eq. (A2) , 
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gives e-". Thus, the estimate of 00 as equal to 
Ed (1) is too large. 

The exponential approximation for large but finite 
n may be improved by multiplying by a correction 
function, f(x, n), defined by 

(I - x/n)" = e-%f(x, n), 

where 

f(x, n) = e%(1 - x/n)", 

(A4) 

= 1 - (x2/2n + x3/3n2 + ... ) 
+ (l/2!)(x2/2n + ... )2 _ .... 

Thus by using Eq. (A4), In. may be written as 

Ino = f .. , J dsl '" ds,. 

X exp (- 2:S~)f(E 8~, n) , 

= f .. , J ds l .,. ds" 1): exp ( -s~) 

X {I - (I: 8~)2 /2n + ... ). 

(A5) 

The multiple integrals over the terms of the ex
pansion of f(L s~, n) may be written as products 
of single integrals involving powers of 

A = 11 ds 2m _,a 
m S e . 

o 

In order to obtain this expansion, we need to have 
the powers of L s~ multiplied out. Thus for (L sD' 
we have 

(L S~2 = L 8~8~ + L 8!. 
i. i i 

This expression has n(n - 1) terms of the type 
8~8~ and n terms of 8!j thus we write 

(L 8~' = n(n - 1)8~8: + ns1. 
Similarly, for higher powers of L 8~ one has 

(L 8~r = n.8~ ... 8! 
+ w(r - 1)n._,s1s: .. , S!-1 + "', (A6) 

wheren. = n(n - 1) ... (n - r + 1) = n!/(n - r)l. 
A good estimate of Ino is obtained if only the 
n.~ ... s~ term in (A6) is used for the powers of 

L s~ in the expansion of f(L 8~, n). The next 
term in Eq. (A6) gives corrections smaller by l/n, 
1/n2

, etc. After some laborious algebra using (A6) 
in (A5) one finds 

I A"{ n2 + n. 2 n6 3 + } 
,,0 = 0 1 - n cP 2 !n' cP - 3 !na cP •• , , 

cP = - [AI/ Ao + In (1 - At! Ao)] (A7) 

= 0.03893. 

Equation (A7) would be the desired form, namely, 
1"0 = 0;;, if the quantity in braces were the binomial 
expansion of (1 - cp)". Actually, coefficients of cpa 
in Eq. (A7) are 

n2. = n. en - 8 - 1) ... (n - 28) 
s!n' 8! n' 

(A8) 
~n./8!, s «n. 

Thus, with the approximation of Eq. (A8) we have 

1,,0 = O~ = A~(1 - cp)", (A9) 

with 80 = Ao(l - cp) = 0.71776. This numerical 
value of 80 gives the value of the radius of con
vergence of t = L" a,,'Y2

("-1l as 'Y! = 4/e8o = 2.050. 
The numerical value of 'Y! found by solving the 
transcendental equations for the tangent point in 
Fig. 2 is 'Y! = 2.042. Probably the estimate of 80 

could be improved by taking more terms from (A6) 
and using them in the expansion of f(L 8~, n). 

The procedure used to evaluate 1,,0 is invalid for 
I", when nl/2/rrt < 1, i.e., for small t, as may be 
seen from the exact expansion of b"" Eq. (41). One 
notes that because of the eo- il .. factors in the in
tegrand, the value of 1", is very much less than 1,,0' 
A quick estimate using Eq. (A2) gives 

I", = 0; = {{ dse-" cos'll"tsy (AI0) 

If the limit of integration in Eq. (AlO) were 
o to en, then the estimate of 0, would be 
(V;/2) exp -('II"t)2/4. Because of the finite inte
gration interval, however, the correct estimate to 
order ('II"t) -2 is 

2( _1)'+1 
8, = e(d)2 (All) 

which leads to Eq. (40) for b",. Apparently when 
'll"t/nl/2 is large, the approximation of Eq. (A8) fails. 
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Quantum Statistics and the Boltzmann Equation* 
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The system of hierarchy equations for the reduced density operators of quantum statistical mechan
ics is replaced by a single functional differential equation for a generating functional. A formal solution 
flf the initial value problem for the latter equation is obtained, leading to series expansions of the 
reduced density operators. These expansions are used to obtain an improved derivation of the quan
tum-mechanical Boltzmann equation. 

1. INTRODUCTION 

T HE statistical-mechanical treatment of a quan
tum-mechanical many-particle system usually 

begins with the density operator D .. , which is the 
solution of an initial value problem for an equation 
analogous to the classical Liouville equation. The 
solution of this problem is equivalent to the solution 
of the quantum-mechanical n-body problem and is 
therefore not practical when n is large. 

In order to circumvent this difficulty one may 
introduce reduced density operators F. (8 = 1, 
2, ... ) which, in an appropriate representation, 
are defined as integrals of the density operator. 
These operators satisfy an infinite system of equa
tions (in the limit n ~ co) called the hierarchy equa
tions, and this system is, in turn, equivalent to a 
single functional differential equation for a generat
ing functional L which generates the operators F •. 

In Sec. 4 of this paper we obtain a formal solution 
of the functional differential equation, and from 
that solution we derive expansions for the operators 
F. as power series in the number density. These 
expansions have the advantage that, for small 
densities, F. may be approximated by a few terms 
of the series. Then to obtain an explicit expression 
for F" only certain k-body problems, where k is 
small, need to be solved. However the expansions 
probably suffer from the defect that the remainder 
terms grow rapidly with time. 

The work in Sec. 4 parallels our earlier work1 

on the corresponding problem in classical mechanics. 
In fact, by introducing the appropriate representa
tion of the operators, the two treatments become 
formally almost identical. We call this representation 
the Wigner representation because in it the density 
operator is represented by the well-known Wigner 

* The research in this paper was supported by Contract 
No. AF49(638)341. Reproduction in whole or in part is 
permitted for any purpose of the U. S. Government. 

1 R. M. Lewis, J. Math. Phys. 2, 222 (1961). 

function. The Wigner representation is discussed 
in Sec. 3. 

In Sec. 2 we review the basic notions of quantum 
statistical mechanics which we shall require. This 
is necessary because these notions are presented 
from a point of view which is slightly different from 
customary formulations. The unifying idea in this 
point of view is the representation of Hilbert space 
in terms of a complete set of commuting observables. 

In Sec. 5 we apply the expansion of Fl , which was 
derived in Sec. 4, as the starting point for a deriva
tion of the quantum-mechanical Boltzmann equa
tion. By careful use of operator representations we 
are able to avoid most of the mathematical diffi
culties which appear in earlier derivations. However, 
as we point out in Sec. 5, one basic difficulty remains 
in that, at one point, we are forced to argue by anal
ogy with the case of classical mechanics. The 
significance of this difficulty and the validity of the 
equation so derived is discussed in the concluding 
remarks. 

2. BASIC NOTATIONS OF QUANTUM STATISTICAL 
MECHANICS . 

Let :JC denote a Hilbert space of elements <J? 
with inner product (<J?, <J?1) and norm II<J?II = (<J?, <J?)1/2. 
The states of a quantum-mechanical system corre
spond to elements <J? of :JC with I\<J?I\ = 1. For many 
purposes it is convenient to represent the elements 
<J? by functions "'(q) = "'(qU), ... , q(k) such that 

This is the well-known Schrodinger, or coordinate, 
representation. For our purposes it is convenient 
to indicate the correspondence between elements <J? 
and functions 1/!(q) by writing 

(2.2) 
1229 
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If q = {q(l>, ... , q(k)} denotes2 the complete set 
of coordinate operators then 

R.(q(j)<I» = q(j)tf;(q); 

and 
i = 1, ... ,k; (2.3) 

(2.4) 

More generally, if Y = {y(I), ... , y(k)} is any 
complete set of commuting observables we shall 
denote the representation of the Hilbert space in 
terms of these operators by 

Ry( <1» = c(y) = c(y(l), ... ,y(k», (2.5) 

Ry(Y(j)<I» = y(j)c(y); i = 1, ... ,k. (2.6) 

Here c(y) is a complex-valued function. In general 
II<I>W will not be given by a simple integral of the 
type (2.4) but may be given by a sum (discrete 
spectrum), a combination of an integral and a sum, 
etc. In order to admit all possibilities we shall 
write3

-
6 

II<I>W = J Ic(y)12 dm(y). (2.7) 

With the aid of the representation R y, functions 
of the operators y(l), ••• , y(k) are conveniently 
defined by 

Ry[f(y)<I>] = f(y)c(y) = f(y)Ry[<I>]. (2.8) 

In this paper we shall be concerned with a system 
consisting of n identical particles. Since an individual 
particle can also be considered as a quantum
mechanical system it is essential to examine the 
relationships between the Hilbert spaces of the 
component systems and the Hilbert space of the 
composite system. 

Given n identical quantum-mechanical systems 
with Hilbert spaces JC.; v = 1, ... , n; let Y. = 

{ y~l), '" , y;k)} be a complete set of commuting 
observables in JC., with representation 

Although the subscript v will be used to distinguish 
the systems, we choose the operators, and hence 
the representations, to be the same in the n systems. 
Let :Ie be the space of complex-valued functions 

c(y (n» = C(Yl, .•• ,Yn) = c(yil), ... ,y~k» (2.11) 

for which 

(2.12) 

Then :Ie may be viewed as representing a Hilbert 
space JC whose elements <I> correspond to the func
tions c(Y(n», and for which 

We denote this correspondence by 

Ry<.)(<I» = c(Y(n»' 

(2.13) 

(2.14) 

The Hilbert space JC is then said to be the producf 
of the spaces JC l , •• , , JC". 

Each observable A. acting on JC., has a repre
sentation as a functional operator [e.g., a differential 
or integral operator] acting· on the functions c.(y.). 
We now define the operator A. acting on JC by 
requiring that the corresponding functional operator 
acting on the functions c(y (n» be the same functional 
operator, the variables Yj (j ~ v) being held fixed. 

The composite of the n identical systems intro
duced above is the quantum-mechanical system 
whose Hilbert space is the product space JC and 
whose observables include the operators A. just 
defined, as well as all functions of these. Thus, in 
constructing the composite system we have identi
fied every physical observable of the component 
systems with one of the composite system. It is 
easily seen that the correspondence (2.14) is the 
representation of JC in terms of the complete set of 
commuting observables 

II<I>.W = J Ie. (Y.) 12 dm(y.). (2.10) 

(2.9) Y(n) = {YI' "', Y .. } = {y;l), ... , y~k)}. (2.15) 

The composite system defined above is called a 
Maxwell-Boltzmann system to distinguish it from 
Fermi-Dirac and Bose-Einstein systems to be dis
cussed shortly. 

2 Following customary notation we Ilometimes use the 
same symbol to denote an operator and the independent 
variable (eigenvalue) in its representation. 

3 In a rigorous treatment of quantum mechanics, Ry is 
called the simultaneous spectral representation of the complete 
set of commuting operators Y(l), ... , Y(k), and m(y) is a 
measure function. For an excellent treatment of these notions 
see references 4---6. 

4 K. O. Friedrichs, Communs. Pure and Appl. Math. 1, 
361 (1948). 

6 K. O. Friedrichs, Communs. Pure and Appl. Math. 4, 
161 (1951). 

8 K. O. Friedrichs, "Spectral Theory of Operators in 
Hilbert Space," N. Y. U. Lecture Notes (1960). 

Let P be any permutation of the integers 
{ 1, ... , n}. Then P assigns to each integer i in 
this set another integer Pi in the set. Let Py (n) 

be defined by 

7 P. A. M. Dirac, Principles of Quantum Mechanics 
(Oxford University Press, New York, 1958), 4th ed., p. 82. 
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The permutation operator P on X may now be defined 
by means of the representation R Y(~): 

(2.17) 

By means of these permutation operators, the 
symmetry operator Sn and the antisymmetry operator 
an are defined by 

s = ~ "p. 
n n! ~ , an = lr L (±)P. n. 

(2.18) 

Here the summation is over the n! permutations P, 
and the positive or negative sign is taken for even 
or odd permutations, respectively. It is easy to 
show that the permutation operators are unitary 
and that the operators Sn and an are Hermitian, 

system whose Hilbert space is Xs (or Xa) and whose 
observables correspond in the above way to the 
observables of the component systems is called a 
Bose-Einstein system (or Fermi-Dirac system). 

In the remainder of this paper we shall treat 
simultaneously the three types of systems mentioned. 
This is very conveniently done by introducing the 
operator Q", where Qn = Sn for Bose-Einstein 
systems, Q" = an for Fermi-Dirac systems, and 
Qn = 1 for Maxwell-Boltzmann systems. Thus, 
e.g., X Q = X for the case Q" = 1. 

Let A = A(I, ... , j) be an operator whose 
functional representer in the representation R y(.) 

is an integral operator acting on the variables 
(1, '" ,j), i.e., 

(2.19) R Y (nJA(I,"', J}<I>] 

and satisfy the condition 

(2.20) 

The last two equations imply that Sn and an are 
orthogonal projectors. 

Let B = B(A~il) be a function of all the operators 
A~i), II = 1, ... , n; i = 1, ... , i.; where A~il 
is an observable in X.. Then B is an observable 
in X, and is said to be a symmetric observable if 
B(A~i~) = B(A;il) for all permutations P of 
{ 1, ... ,n I. It can easily be shown that an operator 
B is symmetric if and only if it commutes with all 
the permutation operators. From this it follows 
that S .. and an are symmetric and that any sym
metric operator B commutes with S" and an: 

(2.21) 

Since S" (or an) is an orthogonal projector, we 
may introduce the subspace Xs (or Xa) of X onto 
which Sn (or an) projects. This is the space of all 
elements <I> of X for which Sn<I> = <I> (or an<I> = <I», 
i.e., the eigenspace of S.. (or an) corresponding to 
the eigenvalue 1. The elements <I> of Xs (or Xa) 
are called symmetric vectors (or antisymmetric vectors) 
and have the property that for every permutation 
operator P, 

P<I> = <I> (or P<I> = ±<I». (2.22) 

Since every symmetric observable B commutes 
with Sn, it follows that if <I> is an element of Xs 
then B<I> = BSn<I> = SnB<I> is also an element of Xs. 
Hence B is an observable on Xs. The same assertion 
is true for Xa. Thus we see that there is a natural 
correspondence between observables in the com
ponent systems and symmetric functions of these 
observables in Xs and Xa. A quantum mechanical 

= J aCYl, .,. 'Yi'y~, ... ,yj) 

x c(yi, ... ,y~, Yi+l, '" , Yn) 

X dm(yD ... dm(y~). (2.23) 

In this case, we say that "the operator A is repre
sented by the kernal a," and indicate the corre
spondence by writingS 

R Y (n)[A(I, ... ,j)] = aCYl' ... ,Yi, y~, '" ,yj) 

(2.24) 

In terms of the notation introduced in (2.23), 
A(2, '" , j + 1) is the operator such that 

R Y (n)[A(2, ..• ,j + 1)<I>] 

(2.25) 

etc. It is easy to see that if ACl, '" , j) and 
B(j + 1, '" , j + m) operate on different sets of 
variables then [A, B] = AB - BA = 0, and 

(2.26) 

Let I <I>, 1 be a complete orthonormal set of ele
ments of X and let B be a linear operator on X. 
The trace of the operator B is defined byD 

8 It is important to note the distinction between (2.14) 
and (2.24). The former is a correspondence between elements 
<I> and functions c; the latter is a correspondence between 
operators A and kernels a, which is induced by the former. 

• J. von Neumann, Mathematical Foundation8 of Quantum 
Mechanic.~ (Princeton University Press, Princeton, New 
Jersey, 1955), pp. 178-195. 



                                                                                                                                    

1232 ROBERT M. LEWIS 

Tr (B) = L, (011" Boll.) , (2.27) Tr (B) = L... (oil., Boll,) + L,. ('11,., JNr,.). (2.36) 

provided the series converges absolutely. It can be 
shown that the value of Tr (B) is independent of 
the choice of the set {oil,}, and if 

RY(nl[B] = b(y(,,) , y~,,» (2.28) 

We assume that B is an observable in JCQ. (Thus 
in the cases Q" = s .. and Q" = fi", B is symmetric.) 
It follows from (2.21) that 

[B, Q,,] = o. (2.37) 

then Now Q .. oII, = oil" Q,,'I1,. = 0, and Q! 
from (2.27) and (2.19), 

Tr (B) = J b(y( .. ), y( .. » dm(y(l) .•. dm(yC"». (2.29) 
Tr (Q,.B) = Tr (Q!B) = Tr (Q,.BQJ 

It is convenient also to define the partial trace .t..... (cp., Q"BQ .. oII,) = L. (Q"oII" BQ .. cp,) 
T.+1. .... j of an operator with respect to some of the 
variables. Thus, e.g., for 8 < j, T.+ l ..... j A(l, .,. ,j) L. (cp" Boll,) = TrCQ ) (B). (2.38) 

is the operator such that Thus, in all three cases, 

= J aCYl' ... ,Y., Z.+l, ... ,Zj, 

x yr, ... ,y:, Z.+l, •.. ,Z;) 

(B) = TrCQ ) (D"B) = Tr (Q,. D,.B) = Tr (D"Q .. B) , 
(2.39) 

and 

Tr (D,.Q,,) = Tr (Q .. D,,) = 1. (2.40) 

X dm(z.+l) ... dm(z;}. 

Of course 

(2.30) For a system of n identical components, Hft and D" 
are symmetric, hence commute with Q". Therefore, 

Tl ....... A(l, .,. ,n) = Tr A(l, .,. ,n). (2.31) Q .. D,,(t) = exp (-itH~/h)Q .. D,,(O) exp (itH,,/h) 

In quantum statistical mechanics, the mean value and 
of an arbitrary observable B is given by 

ih :t (Q" D,,) = [H .. , Q" D,.]. 

(2.41) 

(B) = Tr (D .. B) , (2.32) 

where D .. is a nonnegative, Hermitian, bounded, 
completely continuous linear operator, called the 
density operator. It is normalized by the condition 

Tr (D,.) = 1. (2.33) 

D .. varies with time according to the equation 

D,,(t) = exp (-itH,,/h) D .. (O) exp (itH .. /h) , (2.34) 

where H .. is the Hamiltonian operator of the system. 
It follows from (2.34) that D" satisfies the dif
ferential equation 

ih aD .. /at = [H .. , D,,]. (2.35) 

If, now, we have a quantum-mechanical system 
with Hilbert space JCQ, we must interpret the trace 
in (2.32) and (2.33) as a trace, Tr(Q), over JCQ, 
i.e., the orthonormal set {oil,} in (2.27) must consist 
of elements of JCQ. It is necessary to relate the 
trace TrcQ) to the trace Tr over JC, and this can be 
done as follows: 

Let {<1>,} be a complete orthonormal set in JCQ, 
and {'I1p} a complete orthonormal set in the ortho
complement X~ of X Q • Then the combined set is 
a complete orthonormal set in x, and 

(2.42) 

The object of quantum statistical mechanics is 
to calculate the mean values (B). To this end, one 
must study the solutions of Eq. (2.42). Although 
this can be done in abstract operator notation, 
or in terms of any convenient representation, 
we shall work instead with a Wigner represen
tation which we shall introduce in the next sec
tion. This representation has the advantage of 
producing formulas which resemble closely the cor
responding formulas of classical statistical mechanics. 

The quantum-mechanical system we shall con
sider consists of n identical monatomic spinless 
particles contained in a finite volume V. The 
particles obey Bose-Einstein, Fermi-Dirac, or Max
well-Boltzmann statistics, according as Q.. = S .. , 
Qn = a .. , or Qn = 1. The Hamiltonian of the system 
is given by 

11 .. = T .. + Un + t Uy(q;) , 
i-I 

"Tl~ .. 3 f",a)\22 

T .. = L.Li. = L L ~ , 
;-1 2m ;-1 a_12m 

U" = L cf>(lq; - q;i). 
lS'i<iSn 

(2.43) 

(2.44) 

(2.45) 
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Here m denotes the mass of a particle, q, = {q!, q~, q~} 
and p, = {p~, p~, p!} denotes the Cartesian co
ordinates and the conjugate moments of the ith 
particle, cf> is the interparticle potential, and Vy(q,) 
is the potential due to the containing boundary. 
Thus, Uy(q) is constant inside V and rapidly ap
proaches infinity at the boundary. At an appropriate 
point we shall let n and V tend to infinity in such 
a way that v = V In approaches a finite limit (the 
specific volume). In this process, the effect of the 
terms Uy(q,) vanisheslO

; hence, we shall omit these 
terms from further equations. The resulting Hamil
tonian is 

H .. = T .. + U ... (2.46) 

In our analysis we shall make use of Hamiltonians 

H. = T. + U. and H •. o = T.; s = 1,2, ... 
(2.47) 

corresponding to systems of s interacting and non
interacting particles. 

In what follows we shall make frequent use of 
a representation in terms of the complete set of 
momentum operators 

Pen) = {PI, .•. ,P .. } = /pL ••• ,p!}. (2.48) 

Since this representation will be used so frequently 
we will denote it simply by R, rather than Rp (.)' 

The momentum representation is characterized by 

R(~) = cf>(P( .. » , 

R(P~~) = p~.cp(P .. ), 

11~112 = J 1cf>(Pen» 12 dpen)' 

(2.49) 

(2.50) 

(2.51) 

Here dp e .. ) = dpi •.. dp.. = dp! '" dp!, and the 
integration is over all values of Pc .. )' 

3. THE W1GNER REPRESENTATION 

Let A(I, ... , s) be an operator such that 

R[A(I, ... ,s)] = a(Pe.) , P~a»' (3.1) 

Here, as in Sec. 2, R denotes the momentum repre
sentation. Let 

a(q(a) , Pea»~ = (rrh)-a. J exp { -h
2i 

qea) .ze.)} 

X a(p(a) - Ze.), p(.) + z(a» dz(.). (3.2) 

It follows, by inversion of the Fourier transform, 
that 

10 See N. N. Bogolyubov and K. P. Gurov, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 17, 614 (1947). 

a(P(a) , P~a» = J exp {~ q(a)' (p~.) - P(a»} 

X a[q(a), t(PCa) + P~.»] dq(.). (3.3) 

These equations define a correspondence between 
functions a(qea), Pea» and operators A(I, '" , s). 
It is not apparent that a is the representer of the 
operator A(I, '" , s) in terms of any complete 
set of commuting observables. Nevertheless it is 
convenient to call a" the representer of A in a Wigner 
representation" and to indicate the correspondence 
by writing 

W[A(I, ... ,8)] = a(q(.), PCa»' (3.4) 

With the aid of (2.26) it is easy to see that 

W[A(I, .•. ,j)B(j + 1, ... ,j + m)] 

= W[A(I, ... , J)]W[B(j + 1, ... ,j + m)]. (3.5) 

For convenience, we shall sometimes denote the 
pair q, P by x. Thus, e.g., 

ql, ... , q., PI, ... ,P. = Xl, ... ,X.; (3.6) 

etc. 
In terms of the above definitions, the well-known 

Wigner function, w.(t, xc .. » is simply the Wigner 
representer of the operator Q"D .. (t): 

w .. (t, xc,,» = w .. (t, qc .. » p( .. » = W[Qn D,,(t)]. (3.7) 

The properties of the Wigner function are discussed 
extensively by Irving and Zwanzig.ll Here we shall 
outline briefly those which we shall require. 

Since Q.. and D" are Hermitian and commute, 
it follows that their product is Hermitian and hence 
that w is real, although not necessarily nonnegative. 
Given an arbitrary function g(qc .. ), PC,,», it is well 
known that because of ambiguities arising from the 
ordering of noncommuting operators there may exist 
more than one operator corresponding to g. However, 
among these operators one may specify a unique 
operator, called the Weyl assignment. If G is the 
operator corresponding, under this assignment, to 
g(qc,,)' PC,,» then 

(G) = Tr(Q" D"G) 

= J w .. (t, qc .. ) , PC,,»g(qc,,) , PC,,» dqe,,) dpe .. )· (3.8) 

The Weyl assignment and the proof of (3.8) are 
given in reference 11. 

11 J. H. Irving and R. W. Zwanzig, J. Chern. Phys. 19, 
1173 (1951). 
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In classical statistical mechanics, the mean value 
of a phase function g(q(n), Pen»~ is given by a formula 
identical to (3.8) where Wn is the phase space proba
bility density function, and satisfies the Liouville 
equation (see reference 1). The great virtue of the 
Wigner function formalism is this similarity to the 
classical case. Indeed the Wigner function satisfies 
a quantum-mechanical Liouville equation, similar 
to the classical equation (but differing in the crucial 
fact that it is not of first order). 

This equation is simply the Wigner representation 
of (2.42) and is given by 

a~n + {Wn; Tn} + l:5~:5n Ojk'Wn = O. (3.9) 

Here {w,,; Tn} denotes the Poisson bracket, and the 
operator Ojk' is given by 

Ojk"W" = -~ sin (g \7 pen) . \7 o(n») 

x cf>(/qj - qk/)Wn(t, T(n), Pen»~ /T(n)-O(O)' 

We note that 

(3.10) 

Ojk"Wn = - \7o(n)cf>(/qj - qk/)' \7P(n)wn(t, q(n), Pen»~ 

+ OW) 

= -{cf>(/qj - qk/);Wn} + 0(h2). (3.11) 

The classical Liouville equation is given by (3.9) 
with Ojk 'W" replaced by - {cf>(/qj - qkl); wn}; thus 
it is clearly the limiting form of the quantum
mechanical equation for Ii ---7 O. Various forms of 
the operator Ojk' are given in reference 11. 

With the aid of the Wigner representation, we 
can introduce a formal solution of (3.9) derived 
from (2.41). This solution is given in terms of a 
solution operator S;k) (1, ... , k) defined as follows: If 
a(q(a" Pea»~ = W[A(I, .•. , s)], and k ~ s then 

S;k)(I, ... ,k)a(x(a» = S;k'(I, ... ,k)a(q(a), Pea»~ 

= W{ exp [~Hk(1, ... ,k) ]A(I, .. , ,s) 

X exp [ -;t Hk(I, ... ,k) ]}. (3.12) 

Here Hk is defined by (2.47). The solution operator 
Sik.O)(I, .. , , k) is defined by (3.12) with Hk re
placed by H k •O' In an analogous way we can define 
the operator S;k)(2, '" , k + 1), etc. Where no 
confusion can arise, we omit the explicit indication 
of the variables. Thus, e.g., 

s:a)a(q(a) , Pea»~ = S:')(I, ... J s)a(q(a) , p(.». (3.13) 

It follows immediately from the definitions that 
S~k)a = a, and for all t l , t2 

(3.14) 

From (2.41) it is clear that the formal solution 
to the initial value problem for the quantum
mechanical Liouville equation is given by 

(3.15) 

For use in Sec. 5, it will be convenient to define 
an operator ~k which, in the Wigner representation, 
corresponds to multiplication of an operator by the 
operator Qk' Thus if a(q(.), Pea»~ = W[A(I, ... ,8)], 
let 

(3.16) 

In the case of classical statistical mechanics 
solution operators may also be defined. l One first 
introduces the solution operator for the system of 
Hamilton's equations corresponding to the Hamil
tonian H k (or H k. 0)' If we denote the solution of these 
equations by X(k)(t) = {q(k)(t), P(k)(t)}. then this 
solution operator is defined by 

(3.17) 

This operator maps each point in 6k-dimensional 
phase space into its image after time t along the 
classical trajectory. The classical solution operator 
for functions is then defined by 

S?)(I, ... ,k)a(x(.» = a[Sik)x(kj, Xk+l, ... ,x.], 
(3.18) 

S;k)(2, •.• , k + I)a(x(a» 

= a[xl ,Sik ){X2, .•• ,Xk+l},Xk+2, ..• ,x.], (3.19) 

etc. If, now, we interpret Sin) as the classical solution 
operator, the solution of the initial value problemJor 
the classical Liouville equation is given by (3.15). 

It is important to observe that in the case of free 
particles (cf> == 0; Hn = H".o) the classical and quan
tum-mechanical solution operators coincide. This is 
seen most easily from the fact that in this case the 
two Liouville equations are identical. 

In both the classical and the quantum-mechanical 
cases, the determination of the operator Sift) is 
equivalent to the solution of the corresponding 
mechanical problem and hence is, in general, not 
practical for n > 2. In an attempt to circumvent 
this difficulty, we introduce 8-particle Wigner func
tions defined by 

t" .• (t, x(a» = tn .• (t, Xl, '" ,X,) 

= v· J Wn(t, Xl, ••• ,Xn) dx.+ l ••• dXn; 

S = 1,2, ... ,n. (3.20) 
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By integrating Eq. (3.9) with respect to X.+ I, ... 'Xn! 
one obtains the system of equations for the func
tions tn., 

1 - sin 
v 

s = 1,2, ... ,n - 1. (3.21) 

Here T, is defined by (2.44) and v = V In. We 
observe that the left side of (3.21) is identical to 
(3.9) for s = n. In the derivation of (3.21) one 
makes use of the symmetry of W n , which is a conse
quence of the symmetry of the operator QnD". The 
details of the derivation are given in reference 11. 

In the next section we shall obtain a formal 
solution of the initial value problem for the system 

With the aid of (4.2), L .. may now be expressed as 
a (finite) series expansion around u = o. 

~ 1 ( 1) ( s - 1) Ln[t, u] = 1 + ..t... ---, 1 - - ... 1 - --
.~I s. n n 

x J !n.,(t, XI, ... ,X,)U(XI) .,. u(x,) dx! ... dx •. 

(4.3) 

A differential equation for L" may be obtained by 
multiplying (3.9) by 

n 

II [1 + vu(x;)] 
i=1 

and integrating with respect to Xl, ... , X". We 
then let n ~ (Xl, V -t (Xl in the resulting equation. 
In this process we always assume that V In = v 
approaches a finite limit. Thus we obtain 

of equations (3.21) in the limit V -t (Xl, n -t (Xl, aL 
V In = v. In the following section we shall use that at 
solution to derive a quantum-mechanical analog of 

J [U(XI) + ~J[ T(PI); O:tIJ dXI 

- ~ J [U(XI) + ~J[ u(x2) + n()12 the Boltzmann equation. 

4. THE FUNCTIONAL DIFFERENTIAL EQUATION 

The work in this section parallels the develop
ment of the classical case given in Secs. 2 and 3 
of reference 1. In fact, if we simply replace the 
classical density function D" of reference 1 by the 
Wigner function W n , and the operation {!J>(lq; - qkl);} 
by - ()ih' , the analysis becomes identical. Hence 
we shall only outline the development here, and 
refer to reference 1 for the details. A generalization 
of the classical case to systems of n species of particles 
is presented by Stell.12 

We begin by introducing the functional 

Ln[t, u] = J wn(t, Xl, ... ,Xn) 

n 

X II [1 + VU(X;)] dXI •.. dx", (4.1) 
i=l 

which is defined on the domain of functions u(x) 

elL 

Here 

p2 
T(P) = - and L[t, u] 

2m 

If we set 

t.(t, Xl, ... ,X.) = lim tn.,(t, Xl, •.. ,X.) 

(4.4) 

(4.5) 

and pass to the limit in (3.21) and (4.3), we obtain 

at, . 1 ' at + {f., T.} + l"i~'" ()ik·f. = --;; t1 

s = 1,2, ... (4.6) 
for which the integral converges. By functional and 
differentiation we obtain 

n! 
n'(n - s)! t .... Ct, Xl, '" ,X,); 

"" 1 
L[t, u] = 1 + L-; ._1 s. 

x f f.(t, Xl, ••• ,X.)U(XI) ... U(X.) dXI .. ·dx •. 

(4.7) 
s = 0,1,2, ... ,n. (4.2) It follows from (4.7) that 

12 G. Stell, Doctoral dissertation, New York University, 
(1961). 

8'L I faCt, Xl, ..• ,X,) = • ( ) '" ... () . 
uU Xl <11.(, X, ,,-0 

(4.8) 
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The equations of the infinite system (4.6) are 
called the quantum-mechanical hierarchy equations. 
The functional L is called the generating functional 
because it generates the functions f, by means of 
(4.8). 

In order to solve the initial value problem for 
(4.4), we begin by examining the case of zero den
sity, l/v = 0. We shall use superscripts ° to denote 
this case. It is convenient now to denote the inde
pendent function by w instead of u. Thus from (4.7), 
(4.4), and (4.8), 

x f f.(t, XI, ••• ,x.)w(xI) .. , w(x.) dXI .,. dx" 

(4.9) 

I~(t, XI, ••• ,x.) = ~ () ~w(x ) , 
uW XI U, .. -0 

(4.11) 

and (4.6) reduces to 

8 = 1,2, .. . (4.12) 

Comparing (4.12) with (3.9) we observe that f. 
satisfies the quantum-mechanical Liouville equation 
for 8 particles. It follows from (3.15) that the 
sE>lution of (4.12) is given by 

L[t, u] = L°[t, w]; w(X) = u(x) + l/v. (4.15) 

Inserting this expression in (4.4) we see at once that 
the equation is satisfied by virtue of the fact that 
LO satisfies (4.10). 

But (4.4) must be solved subject to the initial 
conditions 

.. 1 
L[O, u] = oC[uJ = 1 + L.-; 

,_1 8 . 

x f f,(O, XI, ••• ,X,)U(XI) ... u(x,) dXI ... fix,. 

(4.16) 

The functions 1,(0, XI, '" , x,) are the given initial 
data. In terms of (4.15) the initial conditions be
come 

u = w - l/v. (4.17) 

Now let LO[t, wj be the solution of the initial 
value problem for (4.10) with initial conditions 
presented in (4.17). Then L[t, uj, defined by (4.15), 
is the solution of the initial value problem for (4.4) 
with initial conditions presented in (4.16). 

One may now obtain expansions of the functions 
f,(t, Xh .,. , x.) in powers of the density l/v as 
follows: From (4.8) and (4.15), 

f.(t, XI, ••• ,x,) = au(X~'~~t., ~~(X,) Lo 
_ 8'LO[t, w] I 
- aw(xl ) •• , aw(x,) .. -1/.' 

(4.18) 

If we apply 8'/aw(xl ) '" aw(x,) to (4.9) and set 
w = l/v, we obtain f.(t, Xl, ••• , X.) as a power 
series in l/v with coefficients involving the functions 
f.(t, XI, •• , , x.) = S<:'!f.(O, Xl, ••• , X.). Now 
from (4.11) and (4.17) 

(4.13) _ a'LO[O, w] I f.(0, XI, ••• x) , , - aw(xl ) ••• aw(x,) ",-0 

where S:') is the quantum-mechanical solution 

f.(t, XI, .,. ,x.) = S<:'~f.(O, XI, .,. ,x,); 

8 = 1,2, .,. , 

operator for a system of 8 particles. On inserting 
{4.13) in (4.9) we obtain the solution of (4.10) 
subject to the initial conditions 

.. 1 
LO[O, w] = 1 + L-; ,_1 8 • 

x J I~(O, XI, •• , ,X,)W(XI) ... w(x,) fix l ••• fix,. 

(4.14) 

The f.(0, Xl, ••• , X.) are the given initial data. 
In order to solve the general equation (4.4) we 

compare it with (4.10). This comparison suggests 
that we try a solution of the form 

_ a'oC[u] I 
- au(xl ) ••• au(x.) .. --1/.' 

(4.19) 

If we apply ~'/au(xI) .,. au(x.) to (4.16) and set 
u = -l/v, we obtain f.(0, Xl, ••• , X.) as a power 
series in -1/v with coefficients involving the func
tions 1.(0, XI, ••• , x.), which are the given initial 
data. If we now insert the series expression for 
f.(0, XII •• , , x.) into the series expression for 
f.(t, XI, ••• ,x,) we obtain13 

11 Except for slight differences of notation, (4.20) is 
identical to Eq. (38) of reference 1. The latter was obtained 
by a process somewhat more involved than the one indicated 
here, in order to avoid introducing divergent integrals at an 
intermediate step. 
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a> (l)k I.(t, Xl, .. , , X,) = ~ -;; 

f [ k (_I)k-i (jH) 

X L"(k_"),S-t (l,···,j+8) 
,-03· 3 . 

X S~kt-i.O)(j + 8 + 1, ... , k + 8) 

X Ik+. (0, Xl, ... , XkH)] 

8 = 1,2, .... (4.20) 

The series expansion (4.20) for f. has the ad
vantage that for small densities (l/v « 1) the 
function f. is approximated by terminating the 
series after a few terms. Now the functions f. of 
main interest are those for which 8 is small, and 
for these functions, the calculation of the leading 
terms of the expansion requires a knowledge only 
of solution operators S~k) where k is small, and 
initial data j;(0, Xl, .,. , Xi) where j is small. The 
expansion (4.20) probably suffers, however, from 
the same defect as the corresponding expansion in 
the classical case, namely that the remainder terms 
grow rapidly with time. 

In order to obtain the operator analog of (4.20) 
we must first introduce 8-particle density operators 

F .... (t, 1, ... ,8) = V'T.+1 ....... [Q .. D .. (t)], 

and 

F.(t, 1, ... ,8) = lim F .... (t, 1, ... ,8). 
.. -a> 
V_a> 

Then it is easy to show that 

f.(t, Xl, ... ,x,) = W[F.(t, 1, ... ,8)] 

and the analog of (4.20) is 

a> (l)k F.(t, 1, ... ,8) = ~ - T.+l .....• +k 
k-O V 

[ 

k (_I)H 
X ~ jt (k - j)! 

X exp {-~ [H iH(I, ... ,j + 8) 

+ HH.O(j + 8 + 1, '" ,k + 8)]} 

X Fk+.(O, 1, ... , k + 8) 

X exp {~ [H i +,(I, ... ,j + 8) 

+ Hk-i.O(j + 8 + 1, ... , k + 8)]}} 
8 = 1,2, ., .. 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

In the case of classical mechanics, 8-particle 
density functions are defined as in (3.20), where 
w.. is replaced by the classical density function. 
They satisfy a system of hierarchy equations, and 
the solution of the initial value problem for these 
equations is given by (4.20) where the solution 
operators are those appropriate to classical me
chanics. These matters are discussed in detail in 
reference 1. In that paper we applied the leading 
terms of the expansion (4.20) for 8 = 1 to obtain 
a simple derivation of the Boltzmann equation. 
In the next section, we shall attempt to derive the 
quantum-mechanical analog of the Boltzmann equa
tion in a similar manner. 

5. DERIVATION OF THE QUANTUM-MECHANICAL 
BOLTZMANN EQUATION 

In 1933, Uehling and Uhlenbeck14 suggested that 
certain modifications of the collision integral of the 
classical Boltzmann equation would be appropriate 
to the case of quantum mechanics. Since that time 
various authorsIO.15-19 have attempted to verify 
the validity of the resulting equation by deriving 
it from the basic formulas of quantum statistical 
mechanics. In our opinion, none of these derivations, 
including the one to be presented here, is entirely 
satisfactory. Some of the inconsistencies of the 
earlier derivations can be removed by proper use 
of operator representations and application of recent 
developments in time-dependent scattering theory. 
The purpose of the present derivation is to remove 
these inconsistencies and to isolate what we consider 
to be the real difficulty. 

At one point in our derivation we, like the earlier 
authors, are forced to argue by analogy with the 
classical case. It is at this point that we feel the 
basic difficulty remains. Mter the derivation is 
completed we shall add some concluding remarks 
about this difficulty and the possibility of re
moving it. 

The starting point of our derivation is the solution 
(4.20) of the quantum-mechanical hierarchy equa
tions. Following the suggestion of Kirkwood20 and 
others, we shall make use of a time average of fl' 
The form of the molecular chaos assumption ap
propriate to each of our three cases (Q .. = S,,' 

14 E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43,552 
(1933). 

16 H. Mori and S. Ono, Progr. Theoret Phys. (Kyoto) 8, 
327 (1952). 

16 S. Ono, Progr. Theoret Phys. (Kyoto) 12, 113 (1954). 
17 J. ROBS and J. Kirkwood, J. Chern. Phys. 22, 1094 (1954). 
18 A. W. Saenz, Phys. Rev. 105, 545 (1957). 
19 H. Mori and J. RoBS, Phys. Rev. 109, 1877 (1958). 
20 J. Kirkwood, J. Chern. Phys. 14, 180 (1946). 
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Q. = a .. , Q. = 1) may be stated in terms of density Mt - r/2, Xl' X2) = ~2Mt - r/2, xl)Mt - r/2, X2) 
operators as follows: 

~2S;;~Cl)Mt, xI)S;;~(2)Mt, X2) + OCl/v) 
(5.1) 

The justification of this assumption is discussed 
in reference 10. We shall assume that it holds for 
all t. It follows from (3.5), (3.16), and (4.23) that 

lit, XI, X2) = ~2Mt, xl)Mt, X2)' (5.2) 

Thus""'(5.2) is the Wigner representation of the 
molecular chaos assumption. 

If we set 8 = 1 in (4.20), we obtain 

Mt, XI) = S<'::MO, XI) + (l/v) J [S~:MO, Xl, X2) 

(5.3) 

Since initial values may be specified at an arbitrary 
time (say at t - r/2) we obtain, by replacing t by r, 

ftCt + r/2, Xl) = S<':~Mt - r/2, XI) 

+ ~ f [S(~~Mt - r/2, XI, X2) 

(5.9) 

Thus, since ~2 commutes with S;2) and S:2.0), 

Z = ~ f [S;;20) S~~S;;20) ~2Mt, xl)Mt, x2) 

- ~2Mt, xl)Mt, X2)] dx2 + O(1N). (5.10) 

We now introduce a time average f of the one
particle Wigner function '1 defined by 

(5.11) 

and we define the total time derivative of a function 
h(t, XI), 

D,h(t, XI) = (d/dz)S;l)h(t + z, XI) 1 •• 0' 

Then 

(5.12) 

D,h(t, Xl) = (d/dt)h(t + z, ql + (z/m)PI' PI) I.~o 

= [a/at + (l/m)Pl' 'V.Jh. (5.13) 

- S<':~(1)S(~;(2)Mt - r/2, Xl, X2)] dX2 + O(1/v2). From (5.11), (5.12), and (5.6), 

(5.4) 1 j'12 d (I 

In a similar manner we obtain D,fCt, Xl) = -:;: -,/2 dB S. )Mt + 8, Xl) d8 

Mt - T/2, XI) = S;~~Mt, Xl) + O(l/v); 

S!l)Mt + 8, Xl) = Mt, XI) + O(l/v). (5.5) = (l/r)Z, (5.14) 

If we apply the operator S;;~(l) to (5.4) the result is and from (5.11) and (5.5) 

SO)I ( / ) SO) I ( / ) Z ( ) Mt, Xl) = fCt, XI) + O(l/v). 
T/2 1 t + r 2, Xl - -T/2 1 t - r 2, Xl = , 5.6 

(5.15) 

where 

Z = ~ f [S;~~(1)S~;Mt - T/2, Xl, X2) 

- S~I;/2(1)S<':~(2)fz(t - r/2, Xl, X2)J dX2 + O(1N)· 
(5.7) 

We now introduce the transformation of inte
gration variables, X2 = S;~1x~ in (5.7). Since S~l)x = 
S;l) (q, p) = (q + (t/m)p, p) we see that dx~ = dx2 • 

If we then change x~ to X2 in the resulting integral 
and note that S:2.0)(1, 2) = S:1l(1)S?)(2), we obtain 

Z = ~ f [S;~20) Sc:.~Mt - T /2, Xl, x2) 

- S::;/2(1)S~I;/2(2)fz(t - T/2, Xl, X2)] dX2 + O(1N)· 
(5.8) 

From the molecular chaos assumption (5.2) and, 
from (5.5), 

If we insert (5.15) into (5.10), and the latter in 
(5.14) we obtain 

D,f(t, Xl) = 1. f [S;~20) S(~~S;~20) ~2/(t, xl)l(t, X2) 
TV 

(5.16) 

We recognize the left side of (5.16) as that of the 
Boltzmann equation. Our object now will be to 
transform the right side into the Uehling-Uhlenbeck 
modification of the collision integral. 

So far the analysis in this section is valid for the 
case of classical mechanics as well as for the case 
of quantum mechanics. provided we interpret the 
solution operators according to their classical defi
nition, and take ~2 = 1. Let us, for the moment, 
assume that we are dealing with the classical case 
and examine the solution operators appearing in 
(5.16). The following discussion depends on the 
fact that the classical solution operator is defined 
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first for points in phase space (3.17) and then for 
functions (3.18). With the aid of Fig. 1 we examine 
the effect of the operator S!~20) S<':~S~;20) on points 
{Xl' xd = {qh PI, q2, P2} for fixed values of PI, pz, 
and qt, and various choices of q2' 

In Fig. 1, A, B, C together form a cylindrical 
region with spherical end surfaces. The radius of 
the cross section of the cylinder is rl, the interaction 
distance of the interparticle potential; i.e., we 
assume that 

cf>(r) = 0 for r ~ rl. (5.17) 

For points q2 in C, the operator S!;:i°) maps q2 
to q~, the position of 8!~20)q2 in a coordinate system 
in which ql is fixed. Under 8;;2°), q2 moves relative 
to ql, a distance (T/2m) Ip2 - PII in the direction 
P2 - PI, along a trajectory which is a straight line 
because 8~;20) corresponds to a Hamiltonian H 2 •0 

with no interaction. Then S<':~ maps q~ to q~' along 
a trajectory which is first straight, then curved 
in the interaction region (the sphere of radius rl about 
ql) and then straight, with direction - (P2 - PI)' 
Finally 8;;:;°) maps qr back along the straight 
trajectory with direction P2 - 'fil to q~". The 
momenta PI, P2 are unaffected by the operators 
S;;20) but are transformed into Pl. P2 by S<':~. Now 
if T is increased, the points q~ and q~' move outward 
along the straight tI;ajectories but q~" does not 
change its position. Thus, for points qz in C, 

8 (2.0)8(2)8(2.0) {X x} 
T/2 -r .,./2 1, 2 

= 1;"" 8(2.0)S(2)8(2.0) {x X I 
.LU.J. 'r/2 -T -r/2 1, 2 • (5.18) 

It is easy to see that points outside the region 
A, B, C simply map into themselves under the 
operator S~;20) 8<':~8;;20). (Of course, the length of 
the cylindrical region increases linearly with T.) 
It follows that the integrand in (5.16) is zero for 
points qz outside the region A, B, C, hence, certainly 
for points in the region 

(5.19) 

where 

(5.20) 

Therefore, we can replace f(t, xl)f(t, X2) in (5.16) 
by a function get, ql, q2, PI, P2) where 

g = {f f for Iq·p! S (T/2m) Ip2 - PII +rl}. (5.21) 

o for !q.p/ > (T/2m) /P2 -PI/ +rl 

We now assume that f is spatially homogeneous, 
i.e., independent of ql for all t: 

I 

I---~ IPa-P'( ----"1...---

FIG. 1. Configuration space for classical binary collision. 

(5.22) 

It follows that g depends on ql, q2 only through the 
value of (q.p): 

get, ql, q2, PI, P2) = get, q'P, PI, P2) 

(5.23) 

and from (5.21) we may easily derive the identity 

11'" TV _'" gCt, q. p, PI, pz) d(q· p) 

= (/P2 - pd/vm)f(t, PI)f(t, P2) + O(I/Tv). (5.24) 

After replacing ff by U in (5.16), we see from (5.18) 
that we may replace the solution operators by their 
limiting values (for T -t ex» except for q2 in the 
spheres A and B (where incomplete collisions occur). 
The fact that the cylinder increases in length with 
T (and in fact becomes infinite for T -t ex» is rendered 
harmless by the fact that g vanishes for Iq· p! > 
(T/2m) iP2 - PI! + rl' Thus we obtain 

D t(t P) = 1.. f [ll'm 8(2.0)8(2)8(2.0) iC> - '" ] 
t ,I TV r_'" r/2 -r r/2 "'2U "'2g 

(5.25) 

The term O(l/TV) represents the error due to in
complete collisions. 

Although we have derived (5.25) and (5.24) by 
an argument which is valid only for the case of 
classical mechanics, we shall nevertheless proceed 
to show that the Uehling-Uhlenbeck form of the 
quantum-mechanical Boltzmann equation follows 
from (5.24) and (5.25) provided the solution opera
tors and the operator l':!2 in the latter are given their 
quantum-mechanical meaning. 

Let G be the operator whose Wigner representer 
is g, i.e., 

(5.26) 
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Then from (3.16) Here 

(5.27) 
(5.36) 

Let 
Since IE, He] = 0 and [H, H.] = 0, it follows that 

aCt, ql, q2, PI, P2) 

= lim S~~20) S~~S~~20) e2g - e2g = W(A). (5.28) M( r) = exp [;~ (E + He) ] exp [ - ;~ (He + If) ] 

Then from our definition of the solution operators 
(3.12), 

A = lr~ exp (;~ H2.0) exp (_i; H2) 

X exp (;~ H2.0)Q2G exp (-;~ H2.0) 

X exp e; H2) exp (-;~ H 2.0) - Q2G. (5.29) 

Here H2 and H2 •0 are the Hamiltonians corre
sponding to S:2) and S:2.0), i.e., 

H2 = T2 + U2 = (1/2m)(p~ + p~) + </>(Iql - q2i) j 
(5.30) 

(5.37) 

From the theory of time-dependent quantum
mechanical scattering/·ul under appropriate con
ditions22 on the 'perturbing operator' </>(Iq\) , we have 
the following result: 

lim M(r) = SUj lim M(-r) = U. (5.38) 

Here S is the quantum-mechanical scattering opera
tor and U is a unitary operator which transforms 
the unperturbed Hamiltonian E into the per
turbed Hamiltonian H: 

H = U*EUj UU* = U*U = 1. (5.39) 

H2 •0 = T2 = (1/2m)(p~ + pi). (5.31) The scattering operator is also unitary, i.e., 

In order to apply the results of scattering theory 
to (5.29) we introduce center-of-mass and relative 
coordinates: 

ql = qe - !q, qz = qc + !q 

Pc = PI + P2, P = !(P2 - PI), 

SS* = S*S = 1. (5.40) 

From (5.38) 

lim M*( r) = u* S* j lim M*( - r) = U*. (5.41) 

Thus from (5.35) 

lim N(r) = SUU* = S, (5.42) 

PI = !Pe - p, P2 = !Pe + P (5.32) and from (5.34) 

M= 2m, 

H = E + </>(lqJ), 

It follows that 

H2 = H + H.; 

From (5.29), 

H 1 2 
C=2M P,) 

E 1 2 
=-P 

2s£ 

Hz•o = E + He. 

A = lim N( r)Q2GN*( r) - Q2G, 

where 

N(r) = exp (;~ H2.0) exp (-;~ H2) 

A = SQ2GS* - Q2G. (5.43) 

It is somewhat more convenient to work with 
the operator J = S - 1 instead of the scattering 
operator S. Thus 

S = 1 + J, (5.44) 

(5.33) and from (5.43), 

(5.34) 

A = JQ2G + Q2GJ* + JQ2GJ*. (5.45) 

From its definition (5.21) we see that g is a sym
metric function, i.e., get, Xl, X,) = get, X2 , Xl)' From 
this it follows that G = G(l, 2) is a symmetric 
operator, and from (5.42) and (5.35) we see that 
Sand J are symmetric operators, since HI and H 2 • 0 

X exp (-;~ H2) exp (;~ H2.0 ) = M(r)M*(-r). 
II H. E. Moses, Nuovo cimento 1, 103 (1955). 
22 The conditions given in references 4 and 6 are such as to 

exclude point eigenvalues of H. In reference 21 the theory is 
extended to include point eigenvalues. (5.35) 
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are. It follows from (2.27) that G and J commute 
with Q2' Since Q2 = Q: and Q~ = Q2, (5.45) becomes 

A = JQ2G + G(JQ2)* + JQ2(JQ2)* 

= TG + GT* + TGT*, 

where 
T = JQ2' 

From (5.40) and (5.44) 

J + J* = - J J* = - J* J 

hence from (5.47) 

T + T* = - TT* = - T*T 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

The operator J is most conveniently discussed 
by means of the representation in terms of a com
plete set of commuting observables that includes 
the unperturbed Hamiltonian E; hence, we shall 
introduce that representation. To do this, let 

r = Ip I = t Ip2 - PI I ; 
p = r-Ip = (P2 - PI)/lp2 - PII· 

Then p is a unit vector, and 

(5.50) 

= J 11/>012 dE dA(p) dp. dpa ... dpn. (5.58) 

(The integrations indicated are, with respect to E 
over the real semi-axis 0 ::; E, with respect to p 

over the unit sphere, and with respect to the vectors 
P., Pa, ... , p" over all space.) It follows from (5.56)
(5.58) that the correspondence (5.56) between ele
ments 4> of X and functions 1/>0(E, p, p., Pa, ... , pn) 
is the representation in terms of the unperturbed 
Hamiltonian operator E and the operators p, p., 
Pa, ... , pn. For brevity we denote this representation 
by Ro. Thus 

Ro(4)) = 1/>0(E, p, P., pa, ... ,Pn) = >Jl(4)). (5.59) 

Now, in terms of the representation Ro, the 
operator J is given by' .6.21 

Ro(J4» = f j(E, p, p') 

X 1/>0(E, p', P., Pa, ... ,Pn) dA(p') , (5.60) 

and is related to the quantum-mechanical dif
ferential scattering cross section, fI(E, p, pi), by 

(5.61) 
(5.51) The operator J can be put in the form of an 

From (5.32) one may determine that the Jacobian integral operator, 
of the transformation from Ph P2 to p, pc is 1, i.e., 

(5.52) 
Ro(J4» = J j(E, p, p') lJ(E - E') lJ(p. - p~) 

dpl dP2 = dp dp. 

and from (5.50) we see that 

dp = r2 dr dA(p). (5.53) 

Here dA(p) is the area element on the unit sphere 
Ipl = 1. From (5.53) we obtain 

dp = }..2 dE dA(p) , (5.54) 

where 

}.. = (2p.aE)1I4 = (p.r)1/2. (5.55) 

In Sec. 2 we introduced the momentum representa
tion R. Let 

1/>0(E, p, p., pa, ... ,pJ 

X 1/>0(E', pi, p~, p~, ... ,p~) 

X dE' dA(p') dp~ dp~ ... dp~, (5.62) 

with a singular kernel. In earlier treatments, repre
sentations of J of the form (5.62) were used, and 
this led to inconsistencies involving the square of 
the lJ function. To avoid these difficulties we shall 
make no use of (5.62) and shall work directly from 
(5.60). 

In the two cases Q2 = S2, and Q2 = a2, we have, 
from (2.42), 

(5.63) 

= }..I/>(Pl, P2, Pa, ... ,P .. ) = >Jl(4)). 

Then from (2.8), (5.32), and (5.51) 

}..R(E4» = }..(p2/2p.)I/>(Pl, ... ,P .. ) 

(5.56) where P1.2 is the permutation that interchanges 
1 and 2. From (2.17) 

= El/>o(E, p, Pc, Pa, ... ,P .. ), 

and from (2.51), (5.52), (5.54), and (5.56) 

II~W = f 11/>/2 }..2 dE dA(p) dpc dpa ... dp .. 

(5.57) 

R(Q24» = ![1/>0(P1, P2, Pa, ... ,Pn) 

± 1/>(P2, PI, pa, ... ,P .. )] 

and from (5.56) and (5.50) 

R O(Q24» = ![l/>o(E, p, P., Pa, ..• ,Pn) 

±l/>o(E, -p,p.,pa,"· ,P .. )]. 

(5.64) 

(5.65) 
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Thus, from (5.47) and (5.60) 

Ro(TCJ» = R O(JQ2 CJ» 

= ! J j(E, p, p')[cPoCE, p', P., Pa, .,. ,Pn) 

±cf>o(E, -p'/Pc/Pa, .. , ,Pn)]dA(p') 

= J beE, p, p')cPoCE, p', pc, pa, ... ,Pn) dA(p'), 

(5.66) 
where 

beE, p, p') = Uj(E, p, p') ± j(E, p, - p')]. (5.67) 

Corresponding to these two cases, we define the 
symmetrized, and the antisymmetrized cross sections 

u(E, p, p') = (271-1i)2 Ir-1b(E, p, p')12 

= (21rli)2 1(1/2r)[j(E, p, p') ± j(E, p, _p')]12. (5.68) 

Of course, in the case of Maxwell-Boltzmann sta
tistics, Q2 = 1, T = J, b = j, and u = rJ. 

From (5.66) 

Ro(T*CJ» = J b*(E, p', p) 

AR(GCJ» = Ro(GCJ» = J 'Yo(E, p, Pc, E', p', p~)X' 

x cP(p~, pL Pa, .. , ,Pn)(X,)-2 dp~ dp~ 

= X J 'Y(P1/ P2, pf, p~)cP(P{, p~, pa, .,. ,Pn) dpf dp~. 
(5.75) 

From this it follows that 

(XX,)-l'Yo(E, p, Pc, E', p', p~) = 'Y(Pl, P2, pf, pD 

= 'Y(Wc - rp, Wc + rp, W~ - r' p', !p~ + r' p'). 
(5.76) 

Although 'Y and 'Yo were defined as the Rand Ro 
representers of G(l, 2), it is clear that (5.76) is an 
identity which holds for the Rand Ro representers 
of an arbitrary operator B(l, 2). 

Now from (5.66) and (5.73) 

Ro(TGCJ» = J beE, p, p"ho(E, p",Pc,E', p',p~) 

X cPo(E', p', P:, Pa, ... ,p,,) 

X dE' dA(p') dp~ dA(p"). (5.77) 

X cPo(E, p',pc,Pa, ... ,Pn) dA(P'), 

and from (5.49) we obtain 

(5.69) Similarly, from (5.69) and (5.73) 

beE, p, p') + b*(E, p', p) 

= - J beE, p, p")b*(E, p', p") dA(p"). (5.70) 

Ro (GT* CJ» 

- J b*(E' , ") (E E'''') - , p ,p 'Yo ,p, pc, ,p, Pc 

and 

X cPo(E', p', P:, Pa, '" ,Pn) 

X dE' dA(p') dp~ dA(p") , (5.78) 
For p = p' this becomes 

beE, p, p) + b*(E, p, p) 

= - J Ib(E, p, p')12 dA(p'). 
Ro(TGT*CJ» = J beE, p, p''')b*(E', p', p") 

(5.71) 

Our object now is to express the operator A, as 
given by (5.46) first in Ro representation and then 
in R representation. From the latter it will be 
easy to transform to Wigner representation and 
then to evaluate the right side of (5.25) using (5.28). 
In order to do this, let 

X 'YoCE, p"',Pc,E', p",P:) 

X cPo(E', p', P:, Pa, ... ,Pn) 

X dE' dA(p') dp: dA(p") dA(p"'). (5.79) 

Let Ro(A) = ao(E, p, pc, E', p', pD. Then, from 
(5.46), 

(5.72) ao(E, p,Pc,E', p',p~) = Ro(A) 

and 

Ro(Cr~ = 'Yo(E, P,Pe,E', p',p~), (5.73) 
i.e., 

Ro(GCJ» = J 'Yo(E, p, pc, E', p', p~) 

X cPo(E', p', P:, Pa, ... ,P .. ) dE' dA(p') dp:. (5.74) 

= J beE, p, p"ho(E, p",PCJ E', p',p~) dA(p") 

+ J b*(E', p', p"ho(E, p, pc, E', p", p~) dA(p") 

+ J beE, p, p''')b*(E', p', p") 

Then, from (5.59), (5.56), (5.52), (5.54), and (5.72), X 'Yo(E, p'",Pc,E', p", p~) dA(p") dA(p"'). (5.80) 
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If we set R(A) = a(PI , P2 , pi , p~), then (5.76) 
is valid for a and ao as well as for 'Y and 'Yo. Thus, 
from (5.76) and (5.80), 

a(pI, P2, pL p~) = R(A) = J beE, p, pIth 

x (w. - rp", !P. + rp", pi, p~) dA(p") 

+ f b*(E', p', pIth 

X (PI, P2, !P~ - r' p", w~ + r' pIt) dA(p") 

+ J beE, p, p"')b*(E', p', pIt) 

x 'Y(w. - rp"', !P. + rp"', w~ - r' p", !p~ + r' pIt) 

!(2p~ - r' p' + rp")] ds dA(p") 

+ f b*(E', p', pIt) exp [~ s· (r' pIt - rp) ] 

X g[!(2pI + rp - r' p"), 

t(2p2 - rp + r' pIt)] ds dA(p") 

+ f beE, p, p''')b*(E', p', pIt) 

X exp [~s.(r'p" - rp''')] 

X g[!(P. - rp'" - r' pll), 

!(P. + rp'" + r' pIt)] ds dA(p") dA(p''')}' (5.85) 

x dA(p") dA(p'''). 

By definition 'Y 
from (3.3) 

R(G) and g 

(5.81) By definition a = R(A) and a = W(A). Therefore, 
W(G). Hence from (3.2) 

We introduce new variables of integration, s = 
S2 - Sl, s. = HSI + S2)' Then dsldsz = dsds., and 

'Y(PI' P2, pi, pD 

= f exp {~[s.,(Pi + p~ - PI - P2) 

+ !s· (PI - pi + p~ - pz)]} 

aCt, ql, q2, PI, P2) = (7rli)-6 

X f exp [ ~2i (ql,zl + q2'Z2)] 

X a(PI - ZI,P2 - Z2,PI + ZI,P2 + Z2) dZI dz" (5.86) 

and from (5.25) and (5.28) 

1 ( -6 J [-2i ( ] Dd(t, PI) = TV 7rli) exp T ql'ZI + q2'Z2) 

X a(PI - ZI, P2 - Z2, PI + ZI, P2 + Z2) 

X dZI dZ2 dq2 dpz + 0(1/ TV). (5.87) 

The integrations with respect to q2 and Z2 may be 
carried out in (5.87). The result is 

X g[!(PI + pD, !(P2 + pD] ds ds •. (5.83) Dd(t, PI) = ~ (7rli)-3 J exp (-li2i 
ql'Z) 

Here we do not explicitly indicate the dependence 
of g on t, s, and s •. But from (5.23) g is independent 
of s.; therefore, 

X a(pl - Z, P2, PI + z, P2) dz dpz + O(l/TV). (5.88) 

We now insert (5.85) in (5.88). In so doing we 
replace PI by PI - Z, p~ by PI + z, and p~ by P2' 
Then o(pi + p~ - PI - P2) becomes 0(2z) = 2-3 0(z). 
The result is 

'Y(PI, P2, pi, p~) = (27rli)3 o(pi + p~ - PI - P2) 

X f exp [;h s· (PI - pi + p~ - P2) ] 

X g[!(P1 + pD, !(P2 + p~)] ds. (5.84) Dd(t, PI) = ~ {f beE, p, p') exp [f s·(p - p')] 

If we insert (5.84) in (5.81) we obtain 

a(pl' pz, pi, p~) = (27rli)3 o(Pi + p~ - PI - P2) 

X {J beE, p, p") exp [~s.(r'p' - rp")] 

X g[t(2pi + r' p' - rp") , 

[ 
(p + p') r , 

X g t, S'lp + /1 ,PI + 2 (p - p), 

pz - ~ (p - p')] 

X ds dA(p') dpz + J b*(E, p, p') 
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X exp [ -t s·(p - pI)] 

[ 
(p + pI) r I 

X g t,s'/p + // ,PI + '2(p - p), 

P2 - ~ (p - pI)] ds dA(p') dP2 

+ f beE, p, p")b*(E, p, p') exp [~8.(pl - p") ] 

X [ t (p' + p") '& r ( "+ ') 
g 'S'I/ + /'1 ' 2 - '2 p p, 

~ + ~ (p" + p') ] ds dA(p') dA(p") dP2} 

+ O(l/TV). (5.89) 

In (5.89) we have indicated explicitly the dependence 
of g on t and s. This dependence is obtained from 
(5.23). 

From (5.32), P2 = PI + 2p. Therefore, for fixed PI, 

obtain 

Dd(t, PI) = (2::;)2 f r-2 Ib(E, p, pl)I' 

x{f g(t,s·p',PI,P2)d(s·p') 

- f g(t,s'P,PI,pz)d(8' P)} 

X dA(p') dP2 + O(l/TV). 

Finally, from (5.24) and (5.68), 

D,f(t, PI) 

(5.93) 

= ~ f (T(E, p, p')[f(t, PI)I(t, P2) - I(t, PI)I(t, P2)] 

X 1(P2 - PI)/m! dA(p') dP2 + O(l/TV). (5.94) 

For sufficiently large T, we may neglect the remainder 
term in (5.94) and the result is the Uehling-Uhlen
beck form of the quantum-mechanical Boltzmann 
equation, for the spatially homogeneous case. The 

(5.90) Uehling-Uhlenbeck equation for the inhomogeneous 
If we use (5.90) to replace dpa in (5.89), we may case is given by 
then use the result (AI), (A36) of the Appendix D f(t ) 

I ,ql, PI 
to simplify (5.89). This yields 

D,f(t, PI) = (2:;)2 

X {f r-2b(E, p, p)g[t, s· p, PI, P2] d(s· p) dP2 

+ f r-2 b*(E, p, p)g[t, s· p, PI, P2] des· p) dP2 

+ f r-2b(E, p, p')b*(E, p, p')g[t, S'p', PI, P2] 

X d(s·p') dA(p') dP2} + O(l/TV). 

Here 

PI = Pc/2 - rp' = PI + rep - p'), 

(5.91) 

P2 = Pc/2 + rp' = P2 - rep - p'). (5.92) 

Let P = !(p~ - PI) = rp'. From (5.92) we easily 
determine that PI + P2 = PI + P2 and p~ + pi = 
P: + p~. Thus PI and P2 are the final momenta after 
a collision of two particles whose initial momenta 
are PI and P2' The final relative momentum is P 
and the final relative direction is p'. The collision 
preserves total momentum and the kinetic energy 
of both the total and relative motions. 

We now use (5.71) to simplify (5.91). Thus we 

= ~ f (T(E, p, p')(f(t, ql, PI)f(t, ql, P2) 

- l(t, ql, PI)/(t, qll P2)] 

X /(P2 - PI)/ml dA(p') dp2' (5.95) 

The derivation of (5.95) would require further work. 

VI. CONCLUSION 

It is quite clear that the weak point in the present 
derivation is the argument leading to (5.25) and 
(5.24) which proceeds by analogy with the classical 
case. In fact, in our opinion, this point is so weak 
that it leaves the validity of the result (5.94) in 
considerable doubt. In recent years, some work has 
been done2s to clarify the asymptotic approach (as 
t - <Xl) of the operator exp [(it/Ii)E] exp [( -it/ft)H] 
to the operator SU, as in (5.38). It may be that 
this type of study will resolve the difficulty that 
we have pointed out. 

APPENDIX 

The purpose of this section is to apply the formula 
for the inversion of Fourier transforms in order to 

23 K. O. Friedrichs, Nachr. Akad. Wist!. Gottingen, Math
physik. Kl., Ha, 7, 43 (1952). 
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simplify integrals of the form 

I = J exp [~s.(p - w) ] 

X F[S.,: ! :, ' p, wJ dA(p) dA(w) ds. (AI) 

Here p and W are unit vectors and dA is the area 
element on the unit sphere. We shall make use of 
the Fourier inverse relation in the form 

J exp [ ±~ y(x - x') ]t(X') dx' dy = (27rn/r)f(x). 

(A2) 

The area element dA can be replaced by an area 
element in the plane by introducing a Cartesian 
coordinate system such that p has components 
P = (PI, P2, P3); pi + P; + p~ = 1. Then 

(A3) 

To transform the integral I, we introduce a vector 

(A4) 

and a unit vector 

U = (p + w)/Ip + wi. (A5) 

Then 

U·T = o. (A6) 

Let 

(A7) 

j5 = U X i4 = (ui + U;)-1/2(UlU3, U2U3, - ui - u;), 
(A8) 

ja = u. (A9) 

j4 . .is, and j6 form an orthonormal basis. Since 
U·T = 0, 

(AlO) 

where 

T4 = T·j4 = B-l/2[U2(PI - WI) - Ul(P2 - W2)], (All) 

T5 = T· is = B-1I2 [UlUa(Pl - WI) 

+ U2Ua(P2 - W2) - B(Pa - Wa)] , (AI 2) 

B = ui + u;. (A13) 

Let 

A = (p + W)2 = 2(1 + P ·w) 

= 2(1 + PIWI + P~2 + P3Wa). (A14) 

Then 

111 = A -ll2(Pl + WI), U2 = A -1I2(P2 + W2), (AI 5) 

B = A -1 [pi + 2PlWl + w~ + pi + 2P~2 + w~]. (A16) 

We proceed to calculate the Jacobian of the 
transformation from p and W to T and u, evaluating 
the results only at T = 0, i.e., at p = W = u. By using 
relations of the form 

we successively obtain, at T = 0, 

A = 4, 

oA = oA = oA = oA = 0 
OPI OP2 OWl OW2 ' 

OUt OUt OU2 OU2 1 
o PI = OWl = 0 P2 = OW2 = '2 ' 

OUt = OUt = OU2 = OU2 = 0 
OP2 OW2 OPt OWl ' 

oB oB oB oB 
----u 
OPI - OWl - I, 

- = - = U2 
OP2 OW2 ' 

OT4 = B-l/2 OT4 = _B-
u

, } 
OPt 

U2, 
OP2 

Ul, 

OT4 = B-I/2 OT4 = B-I/2 
OWl 

- U2, 
OW2 

UI, 

where 

Let 

OUI OUI OUI OUI 
OPI OP2 OWl OW2 

OU2 OU2 OU2 OU2 

J, = du, dU2 dT4 dTs = OPI OP2 OWl OW2 
dpl dp2 dw l dw2 OT4 OT4 OT4 OT4 

OPI OP2 OWl OW2 

OTs OTs OTs OTs 
OPI OP2 OW, OW2 

(A 17) 

(AI 8) 

(A19) 

(A20) 

(A21) 

(A22) 

(A23) 

(A24) 

(A25) 

. (A26) 

If we insert (A20)-(A24) in (A26) we obtain easily, 
at T = 0, 

J t = 1/lu31· (A27) 
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Let J be defined by 

dA(p) dA(w) 

Then from (A3) , 

dpl dPa riM] dW2 
IPallwal 

and, at T = 0, 

(A28) 

(A29) 

(A30) 

Now define F to be zero in (AI) for Ipl ¢ 1 or 
Iwl ¢ 1. The integral may be written as a sum of 
four terms depending on the domain of integration, 

I++(Pa > 0, Wa > 0), L-(Pa < 0, Wa < 0), 

I+_(Pa > 0, Wa < 0), L+(Pa < 0, Wa > 0) 

and by (A28) 

(A31) 

I = J exp (f s· T )F[S'u, p, w]J dT4 dTs dA(u) ds. 

(A32) 

In the transformed terms, 1++ corresponds to U3 > 0, 

and 1 __ to Ua < 0, and the T domains of both of 
these integrals include the point T = O. The T 

domains for 1+_ and L+ exclude the point T = O. 
(A32) may be written 

I = J exp (~ [S4 T4 + SSTS]) 

X F[S6, p, w]J dS6 ds4 dS5 dT4 dTs dA(u) , 

and from (A2) 

( 21rh)2 J I = -:;:- F[S6, p, w]J dS6 1.-0 dA(u). 

But at T = 0, P = w = u and J = 1; hence, 

I = (21rh/rl J F[S6, U, u] dS6 dA(u). 

(A33) 

(A34) 

(A35) 

Since the point T = 0 is outside the domain of 
integration, 1+_ = 1_+ = O. The contributions 
I ++ and 1 __ may be added to produce an integral 
over the entire unit sphere lui = 1. By changing 
u to p, we obtain the result 

1= (21rh/r)2 J F[(s·p), p, p] d(s·p) dA(p). (A36) 
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The electrical conductivity of an electron-phonon system is calculated from Kubo's formula using a 
perturbation method on the assumptions that the coupling is weak, the system is infinitely large, 
and that the electrons do not interact between them and obey the Fermi-Dirac statistics and phonons 
are in thermodynamic equilibrium. The result is identical with that one would obtain from the 
usually assumed Boltzmann-Bloch equation. The calculation is a logical extension of the previous 
treatment I of the present series, where the same problem is treated on the assumption that the 
electrons obey the Boltzmann statistics. The relation between the present calculation and the deriva
tion of master equation is critically discussed. A brief sketch is given for the calculation of the viscosity 
coefficient of a dilate quantum statistical gas. 

1. INTRODUCTION 

I N the two previous parts I and III of the pre
sent series, transport coefficients: electrical con

ductivity and viscosity coefficients of quantum 

Supported by the Air Research and Development 
Command, U. S. Air Force through its European Office. 

1 S. Fujita and R. Abe, J. Math. Phys. 3, 350 (1962); 
S. Fujita, ibid. 3, 359 (1962). These will be quoted in the 
text as I and II, respectively. 

systems obeying the Boltzmann statistics were cal
culated, starting from Kubo's formulas and using 
the perturbation diagrams.2 In this paper the same 
problem for quantum statistical systems is treated. 

We have formulated in I the general program in 
terms of second quantized quantities. Therefore, 

2 The references concerning Kubo's formulas and diagram 
techniques can be found in I and II. 
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Let J be defined by 

dA(p) dA(w) 

Then from (A3) , 
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systems obeying the Boltzmann statistics were cal
culated, starting from Kubo's formulas and using 
the perturbation diagrams.2 In this paper the same 
problem for quantum statistical systems is treated. 

We have formulated in I the general program in 
terms of second quantized quantities. Therefore, 

2 The references concerning Kubo's formulas and diagram 
techniques can be found in I and II. 
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the necessary quantum statistical effect was included 
there and the Boltzmann statistics were only intro
duced for simplifying the diagram analysis. In Sec. 2 
of the present paper we calculate the electrical 
conductivity of an electron-phonon system, assuming 
that electrons obey the Fermi-Dirac statistics. The 
diagram analysis is greatly facilitated by the use 
of a new diagram technique and a theorem about 
left-multidentate diagrams. As before, we obtain 
the result identical with that which we would 
obtain from the usually assumed Boltzmann-Bloch 
equation. 

Although this identity has been conjectured and 
seemingly accepted,3 its explicit demonstration has, 
to the knowledge of the author, never been worked 
out for a quantum statistical system in which there 
exists no universal relaxation time. However, the 
main interest of the present paper is rather in the 
techniques connected with quantum statistical 
diagrams, i.e., the use of 0 diagrams and a theorem 
about left-multidentate diagrams. In fact these 
techniques are used, e.g., in the following paper 
(IV) of the present series to obtain a new formula 
for the magnetoresistance of an electron-phonon 
system to which situation the Boltzmann equation 
in the usual sense does not exist. 

In Sec. 3 we give several remarks relative to the 
diagrams in general and to the relation between the 
present calculation and the derivation of master 
equation. A brief sketch for the calculation of the 
viscosity coefficient of a dilute quantum statistical 
gas is also given there. 

2. ELECTRICAL CONDUCTIVITY 

Let us consider the same system as in I, an 
electron-phonon system characterized by the Hamil
tonian' 

H = L p
2a;ap + L wqb!bq 

p q 

(2.1) 

where the same notations are used: (ap, a;) and 
(bq , b!) are annihilation and creation operators for 
electron and phonon, V is the volume, and g is the 
coupling constant. We want to calculate the static 
electrical conductivity u from Kubo's formula 

3 See, e. g., papers by Chester-Thellung, Verboven, cited 
in I. Some incomplete invest.igations into the same problem as 
that treated here can be found in the following papers: M. I. 
Klinger, Soviet Phys.-Solid State 1, 782(1960); R. Zigenlaub, 
ibid. 1, 964 (1960); Lang, ibid. 2, 2077 (1961). 

4 Throughout in the text the units are chosen such that 
2M = 11 = 1, where M is the mass of an electron. 

u = !3V- 1 Re {f" dU(JJx[U])}, (2.2) 

where !3 == (kT)-l is the reciprocal temperature, k 
the Boltzmann constant, and J.,[u] is the Heisenberg 
operator representing the x component of the electric 
current; the symbol ( ) means the grand canonical 
average taken with eaN-fJH, ea being fugacity and 
N the number of electrons. 

The integrand in (2.2) can be approximated as 
follows in the weak coupling limit [see (2.5W: 

(J J [u]) 4 2 '" p p'( iuHat a e-iuHata) x x ~ e £..... x x e p' p' p p 0 
P.P' 

- 4 2 '" , U'(P' .) = e £..... PxPx , p, U , (2.3) 
p,p' 

where the symbol ( )0 means the average with 
eaN-fiHo and e the electronic ch:nge. The function 
U(p', Pi u) is expanded in a perturbation series, 
which is represented by linked Feynman diagrams. 

The linked diagrams were analyzed in I by assum
ing the four following conditions: 

(1) The system is infinitely large: 

N~ co, V ~ <Xl (N IV = finite). (2.4) 

(2) The coupling is weak: 

g ~ 0, t ~ <Xl (It = finite). (2.5) 

(3) The electrons obey the Boltzmann statistics: 

f~O, 1 - f ~ 1, (2.6) 

where f and 1 - f are the statistical factors associated 
with the electron line, f being the Fermi distribution 
function. 

The first two conditions will be assumed un
changed in the present analysis. The third was 
introduced only for simplifying the diagram analysis. 
We now replace it by 3'. 

(3') Electrons obey the Fermi-Dirac statistics. 
This is, of course, more satisfactory for practical 
purposes. The analysis becomes somewhat more 
complicated. 

(4) Phonons are in thermodynamic equilibrium. 
Let us now enumerate various contributions to 

U(p, p'; u). In the zeroth order one has 

8(3\p - p')fp(1 - fp), (2.7) 

where 8(3) (p) denotes three-dimensional Dirac's delta 
function. 

6 The function U(p', p; u) defined in (2.3) is different 
from U in (I, 2.2b) by a factor ea-fJp'. Accordingly the 
following change is to be made in the prescription in I for 
obtaining mathematical expressions from diagrams: Treat as 
if the point at t = 0 were below the boundary, and abolish all 
the rules exceptionally prescribed for the point at t = O. 
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g. 
(a) 

e 
p 

(c) 

(b) 

(d) 

FIG. 1. Three 0 
diagrams of the 
second order (a), 
(b), and (c). 
Their basis dia
gram (d). 

In the second order there exist, in all, 48 non
vanishing distinct diagrams which can be obtained 
by folIowing the prescription given in I. We may 
construct them in two steps as follows: 

(i) In one plane draw diagrams which are con
structed by the same procedure as before except for 
the boundary line being suppressed. Such a diagram 
is called an 0 diagram. 

With the convention that an undireoted phonon 
line corresponds to two lines directed in the mutually 
opposite senses, there are six such diagrams of which 
three are drawn in Fig. l(a, b, c). The diagram shown 
in (d) can be obtained from any of the three in 
(a), (b), and (c) by suppressing two particle lines 
with a common momentum running in opposite 
directions without changing the nature of interaction 
vertices. This type of diagram is called basis diagram. 
It may be useful for generating 0 diagrams. The 
meaning of basis diagrams will be discussed in the 
next section. 

(ii) From an 0 diagram construct the number 2" 
(n being the order in g) of diagrams by distributing 
vertices representing interactions Hf above and 
below the boundary line without changing their 
time ordering. The diagrams so obtained are said 
to be mutually similar. 

This process is illustrated in Fig. 2, where four 
diagrams are drawn corresponding to the 0 diagram 
in Fig. l(a). According to the prescription given in 
I those contributions corresponding to similar dia-

(a) 

(c) 

(b) 

(d) 

FIG. 2. The set 
of similar diagrams 
generated from an 
o diagram in Fig. 
lea). 

grams have a common time integral and may 
be summed up into a simple expression. For the 
diagrams in Fig. 2 the sum yields a contribution 

where 

r.(p) == 7rl (~)3 f d3
qW.(p - q, p) (2.9) 

W.(p - q, p) == 'Y.{[(1 - fp_q)(l + nq) 

with 

+ fp-qnq] O.(E.) + [(1 - fp-q)nq 

+ fp-i1 + n q)] O.(E2) I 

O.(E) = O(E) ± (i/7r)P(l/ E) 

101 = p2 _ (p _ q)2 _ Cd
q

, 

E2 = p2 _ (p _ q)2 + Cdq 

being the Planck distribution function. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

We shall say that the sum of those contributions 
corresponding to similar diagrams is the contribution 
corresponding to the generating 0 diagram. 

FIG. 3. A general 0 diagram 
contributing a finite amount in 
the limits (2.4) and (2.5). 

It can be shown that the contribution correspond
ing to the 0 diagram in Fig. 1 (b) vanishes. In general, 
it is found6 that an 0 diagram, such as the above, 
representing a vanishing oontribution oan be easily 
recognized by its special structure, i.e., a structure 
containing one or more vertices which have leaving 
and entering particle lines all on the right. Such a 
structure will be called left-multidentate structure. 6 

The abov'e fact as well as the use of 0 diagrams 
greatly simplifies the analysis of diagrams. In fact 
o diagrams contributing finite amounts in the limits 
of (2.4) and (2.5) have easily recognizable structures. 
Such a general structure is given in Fig. 3. It is 
noted that this diagram is identical in structure, 
except for the boundary line being suppressed, with 
the structure shown in Fig. 5(b) of I, which was 
important for the Boltzmann statistical electrons. 
It is further seen that all of the contributing 0 
diagrams have a common factor fp(l - fp). The 

I The same is true for the case of Bose statistics. 
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total contribution written as 

U(p, p'; u) ~ Y(p', pj u)f,(l - Ip) (2.14) eee 
can be obtained by the same procedure as in 
The u integral of Y defined by 

FIG. 4. Succes
sion of rings rele.
vant to the deriva
tion of master 
equation in the 

1. limits (2.4) and 
(2.5). 

(a) (b) (c) 

",(p', p) s: leo duY(p', Pi u) (2.15) and e is the magnitude of the stationary electric 

C
on be field applied to the system along the x axis. 
.. shown to satisfy the following integral 

equation 

, _ a(3)(p' - p) -'-
",(p , p) - rep) + (21r)2 

X J W(p r(P)q, p) ",(p', p - q) dSq, 

where rand W are defined as 

rep) E ![r +(P) + r -(p)] , 

W(p', p) == ![W +(p', p) + W _(P', p)]. 

If we define a function ~ .. (P) by 

~%(p) == (2~3 f p:",(p', p) ~p', 
we obtain from (2.16) an equation 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

--'-J p" - (21r)2 W(p - q, p)[~z(p) - ~ .. (P - q)] ~q. 

(2.20) 

In view of (2.2), (2.3), (2.14), (2.15), and (2.19) 
the electrical conductivity is given by 

(2.21) 

It is easy to verify that the conductivity calculated 
above is exactly equal to the one that we would 
obtain from the usual Boltzmann equation. The 
latter equation for the present case is written as7 

iJF _ LJ 3 
e S iJp .. - (211/ d (['t" 

X {[n"Fp_q{1 - Fp) 

- (1 + n,JFp(l - Fp_,J] aCE,) 

+ [(1 + n,JFp_,,(1 - Fp) 

- n"Fp(l - Fp_,J] a(E2)}. (2.22) 

Here Fp is the distribution function for the electron 
and nIl that for the phonon, which is assumed to 
have the same form as in the equilibrium state, 

7 A. H. Wilson, The Theory oj MetciUJ (Cambridge Uni
versity Press, New York, 1954), 2nd ed., p. 258. 

3. REMARKS 

A. Master Equation Approach 

In the preceding section we have seen that the 
electrical conductivity calculated from Kuba's 
formula gives in the weak coupling limit a result 
identical to that one would obtain from the usually 
assumed Boltzmann equation. This implies the pos
sibility of deriving this equation from the Von 
Neumann equation using the two limits (2.4) and 
(2.5). This derivation is usually done in two steps: 
(i) derivation of the. master equation and (ii) the 
reduction to the equation for one-body distribution 
function. This was done, for example, by Van Hove.s 

When one uses the diagram technique3
•
8 for cal

culating the transport coefficient and for deriving 
the master equation referring to the same system, 
a remarkable correspondence appears between the 
diagrams for the two cases. Loosely speaking, those 
diagrams which appear in the derivation of the 
master equation are basis diagrams introduced in 
Sec. 2. It is well known8

•
9 that those diagrams 

relevant in the limits (2.4) and (2.5) for the master
equation derivation are characterized by successions 
of rings as shown in Fig. 4. This structure Can be 
recognized as the basis diagram associated with 
that given in Fig. 3. 

Some remarks are in order for the detail of this 
correspondence. 

In the derivation of master equations,S-lO diagrams 
are usually drawn relative to the final state specifying 
the density matrix, and each region sectioned by 
points of interaction represents a many-particle state. 
In our theory of transport coefficients complete 
contractions with respect to the grand canonical 
ensemble are represented by diagrams. The repre
sentation is exact, but a region in the above sense 
does not represent any definite state. Both diagram 

8 L. Van Hove, La theorie des gaz neutres et £anises, edited 
by C. De Witt and J. F. Detoeuf (Hermann at Cie., Paris, 
1960), p. 151. 

9 I. Prigogine, Nan-Equ£librium Statistwal Mechanws 
(Interscience Publishers, Inc., New York, to be published). 

10 K. Nishikawa, J. Phys. Soc. Japan, IS, 78 (1960). 
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representations fail in the presence of Bose-Einstein 
degeneracy. 11 

In the theory of transport coefficients only linked 
diagrams are important. According to the analysis 
due to Hugenholtz,12 this means that every im
portant diagram is of order 1 with respect to N, 
the total number of particles. In the theory of the 
master equation diagonal fragments9 play an im
portant role. Such a fragment however may contain 
several unlinked diagrams and therefore contribute 
an amount of high order N", p 2:: 1. This gives a 
difficulty to the meaning of the master equation 
valid up to an arbitrarily high order. This dif
ficulty never arises in the theory of transport coeffi
cients or in that of the one-body distribution 
function. 

The Boltzmann equation describes the evolution 
of the one-body distribution function. Although this 
equation can be considered in many cases as a 
satisfactory starting point for the calculation of 
transport coefficients, it is not always so. The electri
cal conduction in the presence of magnetic field 
can not be discussed on the basis of the Boltzmann 
equation. 13 This interesting case will be treated in 
the subsequent paper IV of the present series. 

B. Operator Diagrams and c-Number Diagrams. 

In Sec. 2, 0 diagrams are introduced which repre
sent sets of similar diagrams. The relation between 
an 0 diagram and its corresponding similar dia
grams is the same as that between an operatorl4 

and its corresponding c-number diagrams, which 
was discussed earlier by the present author. 16 The 
operator diagrams are, in general, more convenient 

11 See the Appendix of S. Fujita, Physica 27, 930 (1961). 
12 N. M. Hugenholtz, Physica 23, 481 (1957). 
13 See for an instructive review M. Dresden, Revs. Modern 

Phys. 33, 265 (1961). 
l( I. Prigogine, Sv.perjluidite et equation dl~ transport quan

tique, edited by P. Re.sibois (Institute of Nuclear Science, 
Brussels, 1960). 

15 S. Fujita, Physica 27, 940 (1961). 

in discussing the time development of quantum 
statistical quantities. 

C. The Viscosity Coefficient of a Dilute Quantum 
Statistical Gas 

We shall only make brief remarks pertinent to 
the problem. 

The calculation is made on the assumption that 
the gas is very dilute: 

c == N/V~O, t ~ O(ct = finite) (3.1) 

and the potential function vCr) of r (distance) may 
be strong but of short range: 

rver) ~ 0 as r ~ 0). (3.2) 

The limit (3.1) replaces in the present. ease the weak 
coupling limit (2.5). Since the potential is strong 
and has the property (3.2), it is advantageous and 
necessary to use the binary-collision expansion, 11 

which may be represented by diagrams similar to 
the perturbation ones used in II. Except for this, 
the calculation essentially proceeds in the same line 
as in Sec. 2, i.e., using the new techniques, 0-
diagram representation and a theorem about left
multidentate diagrams. 

The resulting expression for the viscosity is 
identical to that one would obtain from the Uehling
Uhlenbeck equation,16 whose collision term contains 
the statistical effects on the final states. 
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A method for estimating the partition function of a quantum mechanical system is described. The 
method is based on a technique for evaluating the Wiener integrals in terms of which the partition 
function may be expressed. This technique involves first, an approximation of the Wiener integral by 
an n-dimensional integral and, second, a Monte Carlo estimation of the value of the n-dimensional 
integral. Application of the method to a harmonic oscillator and a pair of interacting particles in a box 
in two dimensions is described. 

1. INTRODUCTION 

T HE purpose of this paper is to describe a 
method for the numerical estimation of the 

partition function Z of a quantum mechanical 
system, given by 

(1.1) 

where (3 = l/kT, En is the energy of state n, and 
the summation extends over all states with proper 
symmetry. This method is based on the fact that 
Z can be expressed in terms of certain Wiener 
integrals and that values for these integrals can be 
estimated by a "sampling" or Monte Carlo pro
cedure. It will be seen that this method is related 
in spirit to the Monte Carlo method which has 
been used to treat certain problems in classical1

-
a 

statistics. Like the classical method, the present 
method can provide a detailed picture of the im
portant terms in the partition function and the 
nature of these terms is such that their physical 
significance remains clear. 

The discussion will begin with a description of 
the method used here to estimate the Wiener inte
gral, followed by a simple example. Next, we will 
consider the connection of the Wiener integral to 
the partition function and the sampling method for 
estimating the particular Wiener integrals arising 
in this connection. Finally, an illustration of the 
method is given by using it to estimate the partition 
function for a harmonic oscillator and for a pair 
of particles in a two-dimensional box. In the latter 
example we will treat both the case of no interaction 
and an interaction represented by the potential 
function 

* This work was supported in part by the Office of Naval 
Research. 

1 L. D. Fosdick, Phys. Rev. 116, 565 (1959). 
I J. R. Ehrman, L. D. Fosdick, and D. C. Handscomb, 

J. Math. Phys. 1, 547 (1960). 
I W. W. Wood and F. R. Parker, J. Chem. Phys. 27, 

720 (1957). 

VCr) 

r < a 

a ::; r ::; b, 

b<r 

(1.2) 

where r is the distance between the particles and 
a, b, v are adjustable parameters. In all of the ex
amples, except the last, exact results can be obtained 
by standard techniques, affording a direct test of 
the accuracy of the method. The last example is 
included mainly to demonstrate the fact that the 
presence of the interaction does not introduce any 
essential complication for the method. The numerical 
computations described below were performed on 
the Illiac, an automatic computer located at the 
University of Illinois. 

2. ESTIMATION OF THE WIENER INTEGRAL 

Let {x ( r ), rEt} be a stochastic process with a 
continuous "time" parameter 0 ::; r ::; t, normalized 
by the condition x(O) = O. When the increments 
x(r) - xes) are independent and have a Gaussian 
distribution with expectation values 

Ex {xC r) - x(s)} = 0 (2.1) 

Ex {[x(r) - x(s)Y} = ! Ir - sl, (2.2) 

the stochastic process is called a Wiener process.4 

If F denotes a functional, F[x(· )], of the sample 
functions of the Wiener process, then its expectation 
value, Ex {F}, is called the Wiener integral of F. 
A helpful intuitive notion of the Wiener integral 
may be obtained from the following description: 
Let S denote the ensemble of functions x(r) gener
ated by the Wiener process, and let the functional 
F[x(·)] be evaluated for each member x(r) of the 
ensemble, denoting a particular evaluation by 
F[x", ( . )], then the Wiener integral Ex {F} is given 
by averaging F[x",(·)] over the ensemble S. 

'J. L. Doob, Stochastic Proce88es (John Wiley & Sons, 
Inc., New York, 1953). 

1251 
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Most of our attention here will not be directed 
at the Wiener integral, but rather at a closely related 
integral called the conditional Wiener integral, 
denoted by Ex {F I C). The notion of the con
ditional Wiener integral is made clear from the 
following description: Let S' denote a subset of 
the ensemble S, all of whose members x .. (r) satisfy 
some condition C, and let F[x(·)] be evaluated for 
each x .. (r) in S', then the conditional Wiener 
integral Ex {F I C) is given by averaging F[x .. (·)] 
over the subset S'. In this work the condition which 
will be of interest is represented by x(t) = a; that 
is, we require the terminal value of the function 
x(r) to have a fixed value. The associated conditional 
Wiener integral will be denoted by Ex {F I x(t) = a}. 

The method employed here for estimating Wiener 
integrals consists of two stages. In the first stage 
a theorem due to Cameron5 is used to obtain an 
approximation to the Wiener integral in terms of 
an n-dimensional Riemann integral which approaches 
the Wiener integral as n ~ <Xl. In the second stage 
the value of the n-dimensional Riemann integral 
is estimated by a Monte Carlo sampling procedure. 

Cameron's theorem, which is the basis for the 
"rectangle approximation" is as follows, where the 
time interval has been normalized to 0 ::; r ::; 1, 
and C is the space of all continuous functions on 
the interval 0 ::; r ::; 1 which satisfy x(O) = O. 

Theorem 1. Let F[x(·)] be continuous in the 
Hilbert topology on the space C and let 

P l[x(')]1 ::; H(f x2(r) dr) (2.3) 

on C where H(u) is monotonically increasing and 
the Wiener integral Ex {H) satisfies 

Ex {H) < <Xl. (2.4) 

Let al (r), a2 (r), ... be a complete orthonormal set on 
the interval 0 ::; r ::; 1 such that aj(r) E C 
(j = 1,2, ... ) and let fll(r), fl2(r), ... be obtained 
by applying the Schmidt orthogonalization process 
to the sequence of integrals 

{ al(s) ds, { a2(s) ds, .... 

Let the relation between these integrals and the 
flk'S be given by 

(2.5) 

Then the Wiener integral of P[x(·)] is given by the 
formula 

5 R. H. Cameron, Duke Math. J. 18, 111 (1951). 

where 

e.(V = 11"-,,/2 exp (-~ - ~~ - ... - ~!). (2.7) 

In the present work we have taken. rather 
arbitrarily, the orthonormal set 

aj(r) = V2 sin (j - t)rr. (2.8) 

With this choice we have 

i l .() d = V2 cos (j - t)1I"r 
a, S S (. 1) , • J-211" 

(2.9) 

so that 
'Yjk = Ojk[(j - t)1I"r1

, (2.10) 

where Ojk is the Kronecker delta, and Cameron's 
theorem gives 

Ex {P} = :~n.! L:'" ... L:'" F[xn ( ·)]e,,(~) d~1 ... d~n, 
(2.11) 

where 

x,,(r) = t~. v'2 sin (j - t)1rT. (2.12) 
i-I' (j - t)1I" 

We define 

Ex {F)" = L:'" ... L:'" F[x,,( ·)]en(~) d~1 ... ~n 
(2.13) 

and use this as an approximation for the Wiener 
integral Ex {F); this is called the rectangle approxi
mation by Cameron. This represents the first stage 
in our method for obtaining an estimate of Ex {F) 
and it can be described rather simply as follows: 
The ensemble {x(r)} over which one should average 
P[X.,(·)] to obtain Ex {F) is replaced by the ensemble 
{x.(r)} having members which are n-term sine 
series with coefficients ~;/(j - 1/2)11", where ~j 
has a Gaussian distribution with expectation zero 
and variance one-half. 

The second stage of approximation consists in 
evaluating the n-dimensional integral in Eq. (2.13) 
by Monte Carlo sampling. This sampling scheme is 
described as follows. A set k of n numbers is randomly 
selected from a Gaussian distribution; we represent 
this set by ~I ,k, ~2 ,k, ••• , ~ .. ,k' With this set, the 
functional F[X.,k(·)] is evaluated where 

_ ~ ~j.k v'2 sin (j - t)1I"r. (2.14) 
X .. ,k - £...J (' 1) 

i~1 J - 211" 

Letting the integer subscript, k, denote the ordinal 
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number of the quantities, F[x ... 1 (·)], F[x ... 2(· )], .,. 
obtained by repeating this random process, we have 

1 R 
Ex {FI ... R = Ii t; F[X ... k( .)] (2.15) 

and, by the law of large numbers 

Ex {Fln.R - Ex {FI .. as R _ ro, 

in the probabilistic sense, i.e., 

Pr {lEx {FI ... R - Ex {Flnl > EI - 0 

for every E > 0, as R - ro. The use of Ex {FI ... B 

in place of Ex f F I .. represents the second stage of 
approximation. It is to be noted that the Gaussian 
weight factor e .. W which appears in the integrand 
of Eq. (2.13) is implicit in the approximation given 
by Eq. (2.15) because the sets of random numbers 
~I.k are selected from the indicated Gaussian dis
tribution. 

(a) Example 

In order to illustrate the application of these ideas 
let us now consider a specific example, namely, the 
estimation of the Wiener integral of 

P[x(·)] = exp [ -f f rr1x(r)X(rl)dtdt']. (2.16) 

This example is useful because the Wiener integral 
of this functional can be evaluated exactly, moreover 
the approximation Ex {FI .. can be evaluated exactly 
for arbitrary n, and finally the functional is related 
in form to the functional to be treated later in the 
consideration of the partition function. 

The exact value of this Wiener integral is easily 
obtained with the help of the following6

: 

Theorem ~. Let {3(r) be a real function of class 
Lion 0 ::; r ::; 1, let 

{3(r) = r, (2.19) 
a.nd 

[f [[ T }/2 A = ~~ dr , (2.20) 
o • 

A= vA. (2.21) 

Also, 

u = i 1 

rx(r) dr, (2.22) 

F(u) = e-~', (2.23) 

F(Au) = e-(2/15)U', (2.24) 

and finally, 
f+~ Ex {FI = ?!,-1/2 _~ e-(l7/1S)'" du, (2.25) 

which yields 
Ex {PI = v# (2.26) 

= 0.939336436·" 

Let us now consider the first stage of the approxi
mation, namely, Ex {FI .. given by Eq. (2.13). The 
functional F[X ... k(·)] can be written (suppressing 
the subscript k) 

F[x .. (·)] = exp [ - t. ~ ~;~iCi;]' (2.27) 

where 

Ci; = (8j?!,2)(2j - 1)-1(2i - 1)-1 

giving 

X { { rr'[sin (j - i)n] 

X [sin (i - i)n'] dr dr', 

( ),1-;(128)( 1 )3( 1 )3 
Ci; = -1 ?!,6 2i - 1 2j - 1 . 

(2.28) 

(2.29) 

It is easily verified that Ex (FI .. can now be ex
pressed as 

A = [f [{ {3(~) d~ T dr }/2 (2.17) Ex {FI .. = 11'-.. /2 

and let F(u) be a (complex) measurable function 
on - ro < u < ro. Then a necessary and sufficient 
condition that the Wiener integral of 

F[{ {3( r)x( r) dr] 

exists is that e-~'F(Au) be of class Lion - ro < 
U < 00. Moreover, we will then have 

f
+co 

Ex {FI = 11'-112 -co e-"'F(Au) duo (2.18) 

Applying this result to the present problem we have 

6 R. H. Cameron and W. T. Martin, Ann. Math. 45, 
386 (1944). 

X f+~ '" f+a> exp [- t t ~i~1 d.;] 
-0) _00 ,-1 1-1 

X d~1 ... d~ .. , 

where 

(2.30) 

(2.31) 

(~ii = Kronecker delta). The quadratures on the 
right side of Eq. (2.30) are executed with a standard 
formula yielding 

Ex {FI .. = Idl-1/2
, (2.32) 

where \d\ is the determinant with elements do and, 
after a little calculation, one can obtain the result 
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Idl = [1 + 'I' + '1'/3
6 + '1'/5

6 + .. , + 'Y/(2n - 1)6], 
(2.33) 

where 

'I' = 128/11"6. (2.34) 

It is easy to verify that Ex {F}" --7 v'H as n --7 ex>: 

The mth Bernoulli number is given by 

2(2m)! ( 1 1 ) Bm = 1I"2m(22m _ 1) 1 + 32m + 52m + ... , (2.35) 

and setting m = 3 and using the fact that B3 = 1/42 
we have 

. 27 (11"6(2
6 

- 1)) 17 
~~ Idl = 1 + 11"6 84.(6!) = 15' (2.36) 

It is clear from Eq. (2.33) that Ex {F}" converges 
rapidly. To explicitly indicate this, the values (to 
nine significant figures) for n = 1. 2, 3, 4, ex>, are 
listed. 

n Ex {F} .. 

1 0.939416290 

2 0.939340593 

3 0.939337062 

4 0.939336593 

ex> 0.939336436 

Thus, it is seen that considerable accuracy can be 
attained in this example with a small value for n. 

Let us now suppose that the Monte Carlo sampling 
procedure is applied to obtain an estimate of 
Ex {FI", denoted by Ex {Fln.R' which is defined 
by Eq. (2.15). If it is assumed that R is large enough 
to permit use of the central limit theorem, then 
the probability distribution for the error 

AII.R = Ex {F}n.R - Ex {FI .. (2.37) 

is 

Pr {-a < A".R < a} 

~ u~ L+aa exp [ -(~rJ2J dAn.R , (2.38) 

where 

u = U'/RI/2, (2.39) 

and u' is the standard deviation of the random 
variable F[x,,(· )), Eq. (2.27). The expectation value 
of {Ffx,,(· )]2} is readily obtained when it is noted that 
the computation is the same as for the evaluation 
of the right side of Eq. (2.30) with 2Ci; replacing Gij' 

After a short computation, one finds for the case 
n=2 

u' = 0.0785. (2.40) 

With this result and Eqs. (2.38) and (2.39) we can 
estimate the statistical error in the Monte Carlo 
sampling. One finds, for example, that with proba
bility one-half 

/A2 •500 / < 0.002. (2.41) 

The Monte Carlo sampling procedure was pro
grammed for the Illiac. In this program, the process 
of selecting the random numbers ~j. k is carried 
out by a subroutine which generates pseudo
random numbers ~7.k for which the distribution 
function is approximately Gaussian. This generation 
of ~7. k is done by taking a set of twenty pseudo
random numbers (each containing nine binary 
digits) which are approximately uniformly distri
buted on the interval (-1, 1) and summing them 
and finally multiplying the result by a normalization 
factor. It is clear from this that the distribution 
function for ~7.k will certainly deviate from the 
Gaussian distribution at the "tails"; however, ex
periments with this generator gave satisfactory 
agreement with the Gaussian distribution out to 
three standard deviations, and this was judged to 
be adequate for this computation. 

In Fig. 1, results from fifty independent com
putations of A2 • loo and A2 • 50o are shown. The ordinate 
is the value obtained for the probability distribution 
on the basis of the fifty evaluations of A2 • R and the 
abscissa is the normalized value of A2 .R, i.e., A2 • R /u: 
For R = 100, u = 0.00785 and for R = 500, u = 
0.00350. The distribution of the A's should be ap
proximately Gaussian and, for comparison, the 
Gaussian curve is shown in this figure. 

3. PARTITION FUNCTION CALCULATION 

There are a number of areas in physics where 
problems may be formulated in terms of Wiener 
integrals or the related Feynman path integrals.7 

Here we are concerned with the formulation of the 
partition function for a quantum mechanical system 
in terms of certain Wiener integrals. The funda
mental relation required for the present considera
tions has been obtained by Kac. 8 It relates the 

1 S. G. Brush, Revs. Modern Phys. 33, 79 (1961). 
8 M. Kac, Proceedings of the Second Berkeley Symposium 

on Mathematical Statistics and Probability, Berkeley, edited by 
J. Neyman (University of California Press, Berkeley, CalI
fornia, 1951); also Lectures in Applied Mathematics, Volume I, 
Proceedings of the Summer Seminar, Boulder, Colorado, 1957 
(Interscience Publishers, Inc., New York, 1958). 
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FIG. 1. Distribution of the 
error a2,R in the estimate of the 
Wiener integral of the functional 
defined by Eq. (2.16). Solid 
curve is the Gaussian distribu
tion function. 
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normalized eigenvectors 'hex), I/t2(X), ... and eigen
values E I , E 2 • ••• of the differential equation 

-t d21/t/dx2 + V(x)I/t = EI/t, 

to a conditional Wiener integral: 

(3.1) 

exp [(~~)~ X?/t] Ex {exp [ - { V(X(T) + X) dTJ 

X I x(t) = a - X} = tr exp (-Ejt)I/tj(a)I/t;CX). 

(3.2) 

It is clear that Eq. (3.1) is the one-dimensional 
Schrodinger equation for a particle of mass m, with 
a change of variables: 

with 

x = (l/n)(m/2)1I2y, (3.4) 

we obtain 

-t d21/t/dx2 + V«2n2/m)1/2x) = EI/t. (3.5) 

Thus, if we replace V(X(T) + X) in Eq. (3.2) by 
V«2n2/m)1/2(x(T) + X», we may interpret the 
E;'s as the energy eigenvalues and the I/t;'s as the 
corresponding normalized eigenvectors of Eq. (3.3). 
It has been pointed out by Kac and others that if 
one sets a = X and t = {3 (= l/kT) in Eq. (3.2) 
and then integrates over the variable X, the right 
side of Eq. (3.2) becomes 

(3.6) 

and thus one obtains the following expression for 
the partition function for the one particle problem: 

-

• R·,OO 
4 R· 500 

0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 
D.2,R!tT 

Z = c~r/2 i:~ Ex {exp [ -foP V dTJ 

X I x{fi) = o} dX, (3.7) 

where the argument of V is 

(2n2/m)1I2[x(T) + X]. 

This result has been used to obtain a series expansion 
for Z in powers of n obtained earlier in another way 
by Wigner and Kirkwood.7 It will now be shown 
how the ideas developed in the preceding section 
can be used to estimate values of Z. In the following 
example our attention is restricted to a one-dimen
sional, single-particle problem, namely, the one
dimensional harmonic oscillator. 

(a) One-Dimensional Harmonic Oscillator 

The essential differeMe between the present cal
culation and the example of the preceding section 
is that now an estimate of the value of a oonditional 
Wiener integral is required. In particular, the 
stochastic process represented by x( T) is now re
quired to have the value zero after a "time" interval 
equal to fJ has elapsed, as well as having the value 
zero at T = O. This condition on X(T) leads to an 
approximation formula of the type given in Eq. 
(2.13) with basis functions ai(T) which satisfy the 
conditions aj(O) = 0 and aj(fJ) = O. This new 
approximation formula results from the following 
theorem which is proved in the Appendix. 

Theorem 3. Let C a be the space of all functions x( T) 
which are continuous on the interval 0 :$ T :$ 1 
and which satisfy the conditions x(O) = 0 and 
x(l) = a. Let F[x(·)1 be continuous in the Hilbert 
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topology on the space C a and let 

JF[x(·)]J ~ H(f x2(r) dT) (3.8) 

on C a where H (u) is a monotonically increasing 
function of u and the conditional Wiener integral 
Ex {H J x(l) = a} satisfies 

Ex {H J x(l) = al < (x). (3.9) 

Let aJ(T), a2(T), '" be a complete orthonormal set 
on the space Ca. 

Let 

r aj(s) d8 = ~j + Wj(T) , (3.10) 

where ~; is a constant and wj(r) contains no additive 
constant and let 1, (3J(T), (32(T), ••• be obtained by 
applying the Schmidt orthogonalization process to 
the sequence 1, WI(T), W2(T), ,'" • Let the relation 
between the w;'s and the (3;'s be given by 

k 

Wk(T) = L 'Yik{3i(T) , (3,11) 
;-1 

and define 

(3.12) 

Then 

Ex {F J x(l) = al 

= ~~ r:"' ... L:'" F[x.(· )]e .. (~) d~l ... d~., (3.13) 

where 

and 

e .. (~) = 'II' -,,/2e -E, ,-t,'-" ·-E.,. 

We define 

Ex IF J x(l) = a} .. 

= i:'" ... r:'" F[x.(· )]en(~) d~l ... d~ .. , 
where X .. (T) is given Eq. (3.14) and use 

Ex {F J x(l) = a} .. 

(3.14) 

(3.15) 

(3.16) 

as an approximation for the conditional Wiener 
integral Ex {F I x(l) = a}. 

For this calculation the conditional Wiener inte
gral appearing in Eq. (3.7) must be approximated 
and to simplify later formulas we normalize the 
time interval so that it has unit length and introduce 

the thermal wavelength A, given by 

A = hCfJ/m) 1/2 , 

with 

J\. = )../2'11'. 

(3.17) 

(3.18) 

It is to be noted that A is the de Broglie wavelength 
of a particle having kinetic energy equal to !kT. 
With this change in variables Eq. (3.7) becomes 

1 
Z = 172 

'II' 

x I x(l) = O}dX. (3.19) 

For the approximation of the conditional Wiener 
integral appearing here the orthonormal set 

a;(T) = V2 sin in (3.20) 

is used, and it follows from Theorem 3 that 

x .. ( T) = t~; V2 sin. in. 
j-1 ]'I!' 

The potential energy function is 

V(q) = !mw2q\ 

and it follows that . 

V( V2 l'.(x,,( T) + X» 

(3.21) 

(3.22) 

= 'A2mci(X + t ~j V2 ~in in) 2 
. (3.23) 

i ~l ]'I!' 

Integrating this expression with respect to r, and 
using the approximation given by Eq. (3.16) in 
(3.19) to form an approximation Z" for Z, we obtain 

f
+O> 

Z,. = '11'-<"+1)/2 _00 

X f+" exp [- t t dij~i~jJ d~o ... d~ .. , (3.24) 
-00 , ... 0 J ""0 

where we define 

~o = X, a = (/iw{3)2 

a (i = 0, i = 0) 

1 + a/{'II'2 

do; = 23/2a/ /'11'2 

2312a/i2'11'2 

o 

(i = i ;& 0) 

(i = 0, i odd) 

(i odd, i = 0) 

(otherwise). 

(3.25) 
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Executing the n + 1 quadratures one obtains 

Z .. = Idr l
/

2
, (3.26) 

where d is the determinant with elements d;;. It is 
easy to show that this determinant can be written 

Idl = (iI d;i)(1 - t d d~ .. ). 
,-0 odd, 00 " 

(3.27) 

It is now readily verified that we obtain the well
known result 

Z = [2 sinh (1U.!,6/2)r, (3.28) 

when n --7 <Xl in Eq. (3.26). The first factor on the 
right side of Eq. (3.27) converges to the limit 

(3.29) 

= a 1/2 sinh (a) 1/2, 

and the second factor on the right side of Eq. (3.27) 
converges to the limit 

lim(l- i:~) 
n_O) odd i doG dii 

• ( n Sa ) = hm 1 - L: '2 2("2 2 ) 
n~'" odd i } 71" } 71" + a 

= (2/al
/

2
) tanh !a1l2 (3.30) 

and the result (3.28) follows directly. 
These results make it possible in this example 

to compute exactly the error committed by making 
the approximation represented in Eq. (3.24). Table I 
shows the least value of n for which the relative 
error 

p = (Z .. - Z)/Z (3.31) 

satisfies the indicated conditions for different a l
/

2 = 
(nw/kT). This table shows quite clearly that for 
kT ~ 10nw, considerable accuracy is possible when 
X(T) is represented by a sine series containing only 
a few terms. However, at very low temperatures, 
kT ~ nw, the number of terms required for similar 
accuracy is considerably increased and, in particular, 
51 terms are required for an accuracy of 0.1%. 
It is also to be noted that the relative error is in
versely proportional to n; thus, one can predict that 
for a l

/
2 

= 2.56 about 3300 terms would be required 
for an accuracy of 0.01 %. We also note, as expected 
from the above equations, that the number of terms 
required for a given accuracy is proportional to a, 
and thus inversely proportional to T2. 

Let us now estimate the statistical error which 
would result if Monte Carlo sampling is used to 

TABLE I. Tabulation of the minimum value of n required 
for a specified relative error in the partition function. 

a l12 I pi < 1~ I p I < 10-3 Ipl<lO-< 

0.01 1 
0.04 1 
0.16 1 
0.64 2 
1.00 5 
2.56 33 

"I p 1 = 1.015 X 10-' when n .. 500. 
b P = 6.637 X 10-' when n - 500. 

1 1 
1 1 
1 13 

21 208 
51 > 5()()a 

332 > 500b 

execute the quadratures in Eq. (3.24). The quadratic 
form Q, which appears in the exponent of the inte
grand of this expression, is 

[ .. (1) ,. ~ '}(/2] ,. 
Q = ~~ + L ~~":22 + 2~0 L ~ + L e. 

1 171" odd;}7I" 1 

(3.32) 

Let us set up the Monte Carlo scheme following 
the same steps as in the example of the last section, 
ignoring the fact that we could diagonalize Q and 
execute the quadratures directly. The expression for 
Q is separated into two terms 

Q = C + D, (3.33) 

where 

(3.34) 

and D represents the remainder. The sampling pro
cedure would now consist in picking random vari
ables a l

/
2 ~o, ~1! ~2' ••• , ~"from a normal distribution, 

evaluating exp (-D) for each such sample, and 
averaging the results as in Eq. (2.15). It is interesting 
to note that this procedure can get into serious 
difficulty, because for a certain range in a the 
variance is infinite. This is seen from a calculation 
of the expectation value of exp (-2D): 

Ex {exp (-2 D)} = 7I"-(n+l)/2 

x L~'" '" L+",'" exp (-C - 2 D), 

X d~o ... d~n' (3.35) 

After a short calculation, similar to the one above 
in which Z .. was computed, it is found that in the 
limit n --7 <Xl the determinant \d\' of the quadratic 
form C + 2D is 

Idi' = (l/a) sinh (2a)1/2[_(a/2)1/2 + 2 tanh (a/2)1I2J. 
(3.36) 

As a increases from zero this determinant vanishes 
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FIG. 2. Path in r space. 

and becomes negative when a is about 7.3, from 
which it follows that the variance will be infinite 
for a above 7.3. The location of this infinity has no 
real significance, but is simply a consequence of the 
rather arbitrary way the variables in Eqs. (3.33) 
and (3.34) were split up to obtain a weight factor 
for the sampling. However, this indicates that one 
must be cautious in picking a weight factor for the 
Monte Carlo sampling. As it did not seem to be 
worthwhile to perform any numerical experiments 
with this example this concludes our consideration 
of the harmonic oscillator and we turn our attention 
to the two particle problem. 

(b) Pair of Identical Interacting Particles 

In this example we consider a system composed 
of two identical particles with a potential energy V, 
given by 

(3.37) 

where Vbolt is the usual "box" potential, equal to 
zero when both particles are inside a box having 
edge length L, and equal to infinity when either 
particle is outside of this box; and where V int 

represents a spherically symmetric interaction be
tween the particles given by 

r<a 

(3.38) 

where r is the distance between the particles and 
a, b, v are adjustable parameters. The discontinuous 
nature of this potential function does not cause any 
practical difficulties, for it may be regarded as the 
limiting case of a continuous function with very 
rapid changes taking place at the points r = a, 
r = b, and the sides of the box. For simplicity we 
restrict our attention to a two-dimensional system 
with the origin located at the center of the box. 

FIG. 3. Paths in p. space. 

The Schrodinger equation for this system contains 
four coordinates, two for each particle. Equation 
(3.2) may be generalized in the obvious way for 
this four-dimensional problem9

; X(T) is now a vector 
with components, Xl(T), Yl(T), X2(T), Y2(T) and X 
is a vector with components Xl, Yll X 2 , Y" where 
the subscripts identify the particles. In this generali
zation it is to be understood that the components 
of X(T) are generated by four, independent Wiener 
processes. A particular Wiener process is represented 
by a directed "path" in a four-dimensional space, 
called r space, as indicated symbolically in Fig. 2, 
where X denotes the initial point and a the terminal 
point, in accord with the notation in Eq. (3.2). 
The conditional Wiener integral is now viewed as 
an average taken over an ensemble of these paths 
with fixed end points. The path in r space can also 
be viewed as a pair of paths in the two-dimensional 
particle space, called J.I space, as indicated in Fig. 3, 
where numbers distinguish the particles. 

There are two classes of paths in r space which 
we distinguish, "closed" and "open." These are 
represented in Fig. 4 with their counterparts in J.I 

o a o 
(a) (b) 

(cl (d) 

FIG. 4. (a) Closed path in r space; (b) Closed path in 
p. space; (c) Open path in r space; (d) Open path in p. space. 

space. It can be seen from these figures that a closed 
path is characterized by having identical initial and 
terminal points. An open path is characterized by 
having different initial and terminal points, which 
are related in that one is a permutation of the co
ordinates of the other. For a closed path Eq. (3.2) 
becomes 

(rl~l/2 Ex {exp [ - { V(X(T) + X) dTJ I x(t) = o} 
'" 

= L exp (-E;t)ift:(X), (3.39) 
;-1 

• I. M. Gel'fand and A. M. Yaglom, J. Math. Phys. 1, 
48 (1960). 



                                                                                                                                    

PAR TIT ION FUN C T ION EST I MAT ION I N QUA NT U M S TAT 1ST I C S 1259 

and, for an open path Eq. (3.2) becomes 

exp [-(a - XY It] 
('JI"t)l/2 

X Ex{exp [ - it V(X(T)+X) dT] I x(t)=a-x} 

"" L exp (-E;t)( -ltl I/;~(X) (3.40) 
i-I 

where (1; = 0 when 1/;; is symmetric with respect 
to interchange of the particles and (1; = 1 when t/li 

particles. Addition of Eq. (3.40) to (3.39) yields an 
equation with only the symmetric eigenfunctions 
represented and subtraction of Eq. (3.40) from (3.39) 
yields an equation with only the antisymmetric 
eigenfunctions. It follows from this that the partition 
function for Bose-Einstein statistics is represented by 

ZB = HZ.lo.ed + Zo".,,), (3.41) 

and for Fermi-Dirac statistics it is represented by 

(3.42) 

is antisymmetric with respect to interchange of the where 

Zclo.ed = ('JI"~? IIIL:"" Ex {exp [ -(3 { V(V2 '-(X(T) + X» dTJ I x(l) = a} dXl dYl dX2 dY2 , (3.43) 

Zo"en = ('JI"~)2 IIIL:"" g(,1) Ex {exp [ -(3 { V( V2 '-(X(T) + X» dT] I x(l) = a} dXl dYl dX2 dY2 , (3.44) 

with the definitions 

a = a - X, 

(note that a is a function of X) and 

g(,1) = exp (_,12/(3). 

It should be recognized that .12 is simply 

,12 = 2{[Xl - X 2]2 + [Yl - Y2]2}; 

(3.45) 

(3.46) 

(3.47) 

i.e., it is twice the square of the initial distance (or 
terminal distance) between the particles. With these 

results one can apply the method described in earlier 
sections to obtain estimates of Z.lo.ed and Zo"en from 
which the partition function is obtained using Eq. 
(3.41) or Eq. (3.42). 

It is convenient to make a change in variables 
in Eqs. (3.43) and (3.44). Let 

X' = V2 ,-X/L, (3.48) 

where L is the edge length of the box which encloses 
the system, and making use of the fact that V = ex> 

outside of the box, Eqs. (3.43) and (3.44) become 

Z.lo.ed = ZO IJJL:::
2 

Ex{exp [-(3 { V(V2 '-X(T) + X'L) dT] I x(l) = o} dX: dY: dX~ dY~, (3.49) 

Zo"en = ZO I1JL:::
2 

g(Jz~ a') Ex{exp [ -(3 {V(V2~(T) + X'L) dT] I x(l) = (L/V2~) A'} 

where 

(3.51) 

and (.1,)2 is twice the square of the initial distance 
between the particles in terms of the new coordi
nates, X'. It will be recognized that Zo/2 is the 
partition function for the perfect Boltzmann gas 
with two particles when L/X is large, i.e., in the 
classical limit. It is readily verified that Zo"en -? 0 
as L/X -? ex> and, consequently, that ZII' and ZB 
approach the classical partition function as L/X -? ex> • 

Let us now consider the application of our method 
to the evaluation of the integrals appearing on the 

x dX: dY: dX~ dY~, (3.50) 

right side of Eq. (3.49). For the conditional Wiener 
integral which appears on the right side of this 
equation we will use the approximation represented 
by Eq. (3.16) with a = 0 and the understanding 
that Xn(T) has four components represented by 

(k)( ) = ~ I:~k) sin jn Xn T ~~1 • 
; ~l j1r 

(k = 1,2,3,4), 

where ~?) represents a set of 4n independent random 
variables, each having a Gaussian distribution, and 
accordingly the weight factor in Eq. (3.16) becomes 

e,,(~) = exp ( - ~ i;t [~~k)]2), (3.53) 
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TABLE II. Z •• B for L/>.. = 2; Zesaet = 0.655. 

R 

100 
200 
300 
400 
500 

10 

0.690 
0.720 
0.757 
0.772 
0.774 

• 20 

0.690 
0.735 
0.733 
0.725 
0.736 

30 

0.710 
0.710 
0.723 
0.715 
0.720 

and the integration extends over the 4n variables 
{ ~~k) }. A similar approximation may be obtained 
for Eq. (3.46); however, we will only concern our
selves here with the estimation of Zelo •• d' 

The Monte Carlo estimation of the 4n-fold inte
grals is performed by the obvious extension of the 
first example [see Eq. (2.15)] except that we also 
perform the integration over Xf, n, X~, Y~ by 
Monte Carlo sampling. This simply amounts to 
randomly picking values for X{, Y{, X~, Y~, from 
a distribution which is uniform on the interval 
(-1/2, 112). 

In the examples already considered it has been 
possible to evaluate the functional analytically for 
any X,,(T) in the ensemble. However, in general, it 

will be necessary to evaluate g V dT numerically 
and the trapezoidal rule may be used for this. It 
does not seem necessary to use a more sophisticated 
integration formula, inasmuch as the dominant errors 
can be expected to come from the approximations 
already made. 

An analysis of the error that is to be expected 
from a numerical calculation of the partition func
tion when the present method is used proves quite 
formidable and, excepting some relatively trivial 
cases, little progress in this direction has been made. 
We have examined the error "experimentally" by 
performing the computation of the partition function 
according to this method on the Illiac. 

The program which was written to perform these 
computations uses the potential function given by 
Eqs. (3.37) and (3.38). When b = 0 the results 
can be checked against the partition function for 
the ideal gas. This program computes only the 
integrals appearing in the expression for Z.lo •• d, 

Eq. (3.49), hence our results for b = 0 apply to the 
perfect Boltzmann gas. 

In Tables II, III, IV estimates of Z,.,B for dif
ferent AIL are shown, where Z".B is the approxi
mation 

Z",R ~ ZZo .. d = fffL:::2 

Ex {exp [ -(3 f V( v'2 ~(T) + X'L) dT) ] I x(l) = o} 
X dX{ dn dX~ dY~, (3.54) 

and R is the number of samples in the estimate and this sequence is the same for each n. Thus, the paths 
n represents the number of terms in the sine series of the ensemble used to obtain the estimates on any 
in the approximation formula Eq. (3.52). In all line of these tables have the same set of starting 
cases there is no interaction, that is b = 0, and the points for each n. The figure in the lower right 
exact value, Z(exact) = Zelo •• dIZo, is given for corner of each table should be the most reliable 
comparison. The figures in a single column of these estimate, and comparing these estimates with 
tables are cumulative; thus, the estimate for R = 200 Z (exact) one finds, as expected, that the error 
is obtained from the estimate for R = 100 by adding decreases with AIL, the error for the case AIL = i 
100 new samples to the ensemble, etc. The figures being about 2%. The figures in the last line of each 
in a single line of these tables are correlated in the table should be the best estimate for the correspond
following respect. A single random number sequence ing value of n, and it is observed, as expected, that 
is used to pick the initial point for each path and the accuracy of the best estimate increases with n, 

TABLE III. Z",R for L/>.. = 4; Zanet = 0.812. 
TABLE IV. Z .. ,R for L/>.. = 8; Zezaot = 0.904. 

n 
n R 10 20 30 

R 10 20 30 

100 0.820 0.830 0.860 
100 0.950 0.930 0.890 
200 0.940 0.945 0.920 

200 0.850 0.855 0.850 300 0.950 0.950 0.933 
300 0.880 0.860 0.853 400 0.952 0.948 0.932 
400 0.892 0.852 0.842 500 0.944 0.942 0.922 
500 0.888 0.850 0.844 
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but very slowly. Finally we note that the con
vergence to the exact value is from above. An indi
cation of the dependence of the results on the 
choice of the random number sequence is shown in 
Table V which displays the same results as for 
Table IV except that a different random number 
sequence has been used. The results in Table V 
show a smaller variation with n than those in 
Table IV. A comparison of these results indicates 
that the variation in estimates due to different 
random number sequences is of the same order as 
the variation due to different n; compare, for 
example, Z\O 500 in Table V with Zso 500 in Table IV. 

Two sets of computations were performed in 
which interactions between the particles were 
present. In the first set of calculations Zolo •• d/ZO 
was estimated for L/X = 8, a = 0 (Le. no hard core) 
and a range of values for b/X and fJv; this range 
included all combinations of b = -h, 1, 1. 1 and 
fJv = -0.1, -0.2, -004, -1, -2, -4. The sample 
size was R = 400, and n = 20. The results had the 
expected qualitative behavior. In particular, for 
b/X = -h and b/X = 1 the estimate Z20400 was 
independent of fJv and identical to the estimate for 
the case b = 0, while for b/X = 1 and t there was 
a dependence on fJv in which Z20400 decreased with 
decreasing fJv and with increasing b. Thus, the 
particles did not interact (in this small set of 
samples) while the diameter of the "well" was less 
than one-half of a thermal wavelength. 

In the second set of computations estimates of 
E.1o •• d/ZO were obtained for aiL = rh, b/L = -h, 
and a. range of temperature given by starting values 
L/X = 32, fJv = 1 and decreasing temperature in 
steps of 25%. The classical value of the partition 
function for this case can be calculated exactly: 

Z = Zo f'rry_+\I//2
2 

e- IIV (x.'.y.'.x,'.y,') 
t31 ••• ieal JJ .. 

x dX{ dYf dX~ dY~, (3.55) 

and performing the quadratures on the right with 
aiL = , b/Ly-}g- = -h one obtains 

TABLE V. Z" R for L/X = 8 and different random number 
sequence than that used in results for Table IV. 

n 
R 10 20 30 

100 0.920 0.910 0.940 
200 0.925 0.920 0.920 
300 0.927 0.913 0.910 
400 0.915 0.905 0.905 
500 0.922 0.914 0.914 

TABLE VI. Estimated value of the quantum mechanical 
partition function compared with the classical partition 
function; the sample size R is 900 except for results marked 

by .. where it is 4500. In all cases n =0 20. 

fJv Z",R ~ Zoloeed/ZO Zol ...... dZ, 

0.25 0.99 1.00 
0.31 0.99 1.00 
0.39 0.99 1.00 
0.49 0.99 1.00 
0.61 0.98 1.00 
0.76 0.98 1.00 
0.95 0.98 1.00 
1.19 0.97 1.01 
1.49 0.97 1.01 
1.86 0.98 1.02 
2.33 0.98 1.03 
2.91 0.99 1.05 
3.64 1.01 1.10 
4.55 1.05 1.26 
5.68 1.09 1.82 
7.10 1. 76 4.41 
8.88 2.10'" 21.1 

11.10 5.83'" 185.3 

Zol ... ioal = Zo[0.997 + 2.80 X lO-sl"]. (3.56) 

In Table VI the ratios Z.I ... io.I/ZO and Z.looed/ZO 
estimated by this method are shown. In these com
putations n = 20. 

It is to be kept in mind that the thermal wave
length increases with decreasing temperature so that 
as the temperature decreases more paths tend to 
go out of the box, decreasing the estimate of the 
partition function; on the other hand the weight 
given to paths which interact via. the attractive 
well increases with decreasing temperature tending 
to increase the estimate of the partition function. 
The apparent decrease in Zolo •• d/ZO with increasing 
fJv at the start of the table is probably due to the 
predominance of the former of these effects while 
the latter increase is certainly due to the pre
dominance of the latter effect. One might suspect 
that as T ~ 0, Zolo.ed/ZO would once again decrease 
because every path tends to go out of the box; 
however, the weight given to the interacting paths 
is increasing exponentially to CIO and therefore the 
limiting behavior is not clear from these simple in
tuitive observations. The larger value of Z.I ... lo.I/ZO 
compared with Z.looed/ZO can be explained qualita
tively, as due to the paths which wander out of 
the box, and which interact via. the hard core. The 
statistical error in the estimate, or more precisely, 
the variance of the estimate increases with de
creasing temperature. This error is indicated in Fig. 5 
where the estimate of Zolo •• d/ZO for fJv = 1049, 8.88, 
11.10 is plotted as a function of sample size R; the 
estimates for increasing sample size are cumulative. 
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4. CONCLUSION 

In this work we have presented a method for 
numerically estimating the partition function of a 
quantum mechanical system by a Monte Carlo 
sampling scheme, in which the evaluation of the 
partition function is reduced to a simple repetitive 
process, well suited for automatic computation. 
Moreover, this process which consists simply in 
generating samples for averaging may be terminated, 
and then resumed at a later time to obtain more 
samples and an improved average. Finally, subject 
to the limitation in accuracy imposed by the ex
pansion selected for x( T), a result of arbitrary ac
curacy can be obtained by indefinitely continuing 
the sampling procedure. 

The accuracy indicated by our numerical experi
ments suggests that the method can be useful in 
practical problems. For example, with a computer 
of the IBM 7090 variety one might compute ZopeD 

for liquid helium, which is a fundamental parameter 
in Brush'slo approximation of the partition function. 
However, with this method it is possible (at least 
in principle) to calculate the whole partition func
tion instead of just part of it and it would be worth
while to attempt to do this, even for small systems. 
There are three important points that need study 
in this connection. Before taking up these points 
it should be noted that in a practical problem it 
might be better to calculate the various derivatives 
of the partition function directly rather than by 

10 S. G. Brush, Proc. Roy. Soc. (London) A242, 544 (1957); 
A247, 225 (1958). 

numerical differentiation which would tend to 
amplify the errors in the partition function. 

The first point needing investigation is the choice 
of the series approximation for x(T). It is almost 
certain that a better choice than the sine series 
can be found. The present results appear to indicate 
that one can get good accuracy with a short sine 
series when kT ~ 10 X (ground state energy) but 
the number of terms required becomes quite large 
when kT ~ (ground state energy). These results 
certainly depend on the potential function, and these 
estimates are to be taken only as a rough guide. 
Since it is known that X(T) for the Wiener process 
is not a differentiable function it can be expected 
that basis functions with similar properties would 
be better than sine functions. In particular the 
functions obtained by integrating the Walsh func
tions might be a better choice. Another way to 
achieve an improvement would be to pick basis 
functions which reflect the fact that when the end
points are fixed the largest deviations in the path 
tend to occur at the center of the time interval. 
Finally, the Simpson's rule formula of Cameron6 

might be tried; however, it appears to be compli
cated to use and may not be well suited for auto
matic computation; nevertheless, the application of 
the Simpson's rule formula needs further study 
before rejecting it as a useful tool. 

The second point needing investigation is con
cerned with speeding up the sampling procedure. 
It would be possible to generate a "library" of 
paths and store them on magnetic tape. If this were 
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TABLE VII. Terms for the 3-particle partition function. 

Term value Zo 

Term value ZI 

ZI = (1r{3)-O/1 fff: g(AI,a) Ex {exp [ - (3 I: V dT) ] I x(l) = AI.a} dXI dX2 dX3 

Term value Z2 

Z2 = (1r{3)-9/2 fff: g(AI,2) Ex {exp [ - (3 I: V dTJ I x(l) = AI'2} dXI dX2 dXa 

Term value Za 

Z3 = ( ... {3)-9/2 fff: g(A2.a) Ex {exp [ -(3 f: V dTJ I x(l) = A2,a} dXI dX2 dX3 

Term value Z. 

Z. = (1r{3)-9/2 fff: g(AI,2,3) Ex {exp [ -(3 1: V dTJ I x(l) = AI.2,a} dXI dX2 dX3 

Term value Z 5 

done the time required for generation of random 
numbers and evaluation of the series expression for 
the path could be eliminated, and with careful 
programming the tape-reading time could be made 
negligible. 

The third point requiring study concerns a 
technique for picking the important contributions 
to the partition function in the N-particle problem. 
Since we have considered in detail only a two
particle problem it will be worthwhile to outline 
the application of the present method to a three
particle system. 

In a three-particle problem there are six types 
of path in r space corresponding to the six permuta
tion operations on the three particles. These paths 
in p. space are indicated in Table VII along with 
the term value for each; the term value being 
the contribution to the partition function made 
by the indicated class of paths. These expres
sions are written with the following notational 
conventions: Xi represents the initial coordinates, 
in a three-dimensional space, of particle i; 6.;; 
represents a vector with components X, - Xi' 
Xi - Xi' and zero; 6.m represents a vector with 
components Xi - X k , Xi - Xi' X k - Xi; g(A) 
is given by Eq. (3.46) with A2 being the sum of the 
squares of the components of 6.. 

It is clear from symmetry that ZI = Z2 = Za 
and Z4 = Zs. Also, the terms Zo, Z., Zs represent 
even permutations and Zh Z2' Z3 represent odd 
permutations. From Eq. (3.2) it follows that the 
partition function for Bose-Einstein statistics is 
given by the following linear combination of the 
term values, 

ZB = izo + fZI + {Z4 (4.1) 

where the denominator 6 comes from normalization 
of the symmetrized eigenfunction. Similarly, the 
partition function for Fermi-Dirac statistics is given 
by 

Z, = iZo - iZI + iZ4' (4.2) 

It is convenient to think of the magnitude of the 
coefficients as representing a weight factor or a 
priori probability for the associated term value. 
Following these ideas one can construct the partition 
function for a system of N identical particles as a 
sum of terms of the above type multiplied by 
certain coefficients whose magnitude is the weight 
of the associated term. This suggests the possibility 
that an N-particle computation might include 
random sampling of terms according to these a 
priori weights. 

Referring to the formulas for the terms in Table 
VII, one can readily see that all of the terms except 
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Zo tend to zero as the system becomes classical 
(i.e. as AIL ~ 0) because the factor g(A) becomes 
small except when A itself is very small. It is also 
noted that the factor g(A) favors terms representing 
a small number of permutations. These observations 
suggest the use of A itself as a random variable in 
the Monte Carlo sampling to automatically select 
the important contributions to the partition func
tion. In a similar way one might anticipate the 
contribution that the Wiener integral itself will give 
for a particular A. With importance sampling along 
these lines it might be possible to greatly reduce 
the labor in N -particle computations. 
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APPENDIX 

In this Appendix a proof of Theorem 3 of the text 
is presented. This proof requires a preliminary result 
obtained below. 

Let Uo, U h U2, ... u .. be a set of n + 1 Gaussian 
random variables with joint probability density 

p = (2'11')-(1,+1)/2 !Cr1/2 e-U'C-'UI2, (AI) 

where C is the covariance matrix with elements 

Cu = Ex {u,u;} , (A2) 

and U is a vector with components Uo, U h .,. , U,.. 
Let {X(T), 'I' E (0, I)} be a Wiener process, and 

let ~O(T), ~1(T), ... ~,,(T) be an orthonormal set of 
functions on the interval (0, 1). Let the u;'s be given 
by the Stieltjes integrals: 

U; = J: ~b) dx(T) (i = 0, 1, ... ,n). (A3) 

It follows from the definition of the Wiener process 
that the u's will be Gaussian random variables, 
since they are defined as sums of Gaussian random 
variables. Under these requirements, the conditional 
Wiener integral Ex {F(uo, Uh U2, ... ,un) I Uo = a} 
is given by 

= Ex {{ { ~;( T)~;( '1") dx( '1') dx( '1") }, (A5) 

and since x( '1') represents a Wiener process, it follows 
that 

Ci; = ! L ~kr)~;(T) dT, (A6) 

and making use of the fact that the ~;'s are ortho
normal 

and we have, finally, the result 

Ex {F(uo, Ul, ••• ,u .. ) I U o = a} 

(A7) 

= L:'" ... L:'" F(a, ~1' ••• ,~,,)e,,(~) d~1 ... ~ .. , (A8) 

where 
e .. (~) = '/I' -,,/2e- h ·- f ,·-"·-f ••• (A9) 

With this result we now proceed to the proof of 
Theorem 3. This proof is the same as Cameron's 
for Theorem 1 with necessary changes imposed by 
the use of a conditional Wiener integral. 

For all x E Ca , lim,._", X .. (T) = X(T) where 

x .. ( '1') = t a,,( '1') 11 a,,(s)x(s) ds 
"-1 0 

t a,,( '1') { [f ak(U) duJ dx(s) 

t a,,( '1')[1
1 

a" dx(s) + 11 w,,(s) dx(S)] (AI0) 
'-1 a a 

and, finally, 

x,,( '1') = ~ a,,( T){ ~ 'Y i" { ~i(S) dx(S)} , (All) 

with 'YO.k = a •• 
Since F[x( . )] is continuous in the Hilbert topology, 

we have, for all x E CQ' lim,._", F[x,,(·)] = F[x(· )]. 
It follows from Bessel's inequality and monotonicity 
of H(u) that 

IF[x,,(')]I ~ H({ [X .. (TW dT) ~ H({ [X(t)]2 dt), 

(AI 2) 

thus F[x,,(·)] is dominated by a Wiener integrable 
1 ( a

2
) 1+'" 1+'" functional for all n. It follows that = (271'0'~)1 2 exp -2 2 •• • F(a, U 1 , " • ,u,.) 

tIc -Q) -co 

Ex {F I x(l) = a} = lim Ex {F[x,,(·)J I xCI) = al. 
X pea, Ul ... U,,) dUl '" du", (A4) .. -'" (AI3) 

where O'~ is the variance of Ua. 

We now compute the elements of the covariance 
matrix. 

C;; = Ex {uiu;} 

Noting that F[x .. (·)] is a function of the functionals 
g (Jo(T) dx(,,), '" , g fJ .. (T) dX(T) and using the 
result established above (AS) we have the result 
given in Eq. (3.13) of the text. 
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Dimers on Rectangular Lattices * 
TAl TsuN Wut 

Brookhaven National Laboratory, Upton, New York 
(Received August 17, 1962) 

A .implified calculation of a known result of the dimer problem on a ~tangular lattice is presented. 

1. INTRODUCTION 

T HE combinatorial problem of filling a planar 
rectangular lattice completely by dimers has 

recently been solved by Kasteleyn 1 and by Tem
perley and Fisher,2.3 All these authors make use 
of the Pfaffian. It is the purpose here to point 
out that the computation can be shortened by using 
a simple property of the permutation factor of the 
Pfaflian. No new result is obtained. 

2. REVIEW OF THE PROBLEM 

In order to explain the notations to be used, this 
dimer problem is first briefly reviewed. The termi
nology follows closely that of Kasteleyn.l For de
tails the reader is referred to the papers of Kasteleyn1 

and Fisher.s 

Consider a planar rectangular lattice with lattice 
points 0, k), 1 ~ i ~ m and 1 ~ k ~ n, where 
m is even. A dimer can be used to cover sym
metrically two consecutive lattice points, either 
[0, k), (; + 1, k)] (horizontal) or [(i, k), (i, k + 1)] 
(vertical), and the straight line joining the two 
lattice points covered by a dimer is called a bond, 
again horizontal in the former case and vertical 
in the latter case. The problem is to find the com
binatorial factor g(N, N'), defined as the number 
of different ways of covering the lattice points by 
N horizontal dimers and N' vertical dimers such 
that each lattice point is covered exactly once. 
Clearly 

N + N' = imn. (1) 

In particular, it is clear that g(imn, 0) 1. The 
bonds that appear in this particularly simple way 
of covering the lattice points are called Co-bonds. 
In order to determine g, it is convenient to use the 
generating function 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

t Allred P. Sloan Foundation Fellow. On leave from 
Harvard University, Cambridge, Massachusetts. 

1 P. W. Kasteleyn, Physica 27, 1209 (1961). 
t H. N. V. Temperley and M. E. Fisher, Phil. Mag. 6, 

1061 (1961). 
aM. E. Fisher, Phys. Rev. 124, 1664 (1961). 

z ..... (z, z') = L: g(N, N')ZNZ,N', (2) 
N.N' 

where (1) is satisfied for each term on the right
hand side. 

A covering of the lattice points by dimers can be 
expressed as a permutation P of (i, k): 

[(ii, k1), (i2, k2)], [(is, ka), (i4, k4)] , ••• 

[0 ..... -11 k mn- 1), (i ..... , k", .. )], (3) 

such that (i) either i2/& = ;2/&-1 + 1, k2/& = k2 /&-1 

or i2/& = j2/&-I, k2/& = k2/&-1 + 1, and (ii) j2/&-1 ~ j2/&+1 
and, if j2/&-1 = j2/&+I, k2/&-1 < k2/&+I' If the covering 
is the simple one corresponding to N = !mn and 
N' = 0, then P is the identity; if (i) and (ii) are 
satisfied, then P is said to be permissible. Thus 
each covering corresponds to a permissible per
mutation. Let the permutation factor 8p be 1 or -1 
according as P is even or odd. 

Some of the bonds that appear in a covering may 
be Co-bonds, others are then called non-Co-bonds. 
These non-C o-bonds together with all Co-bonds 
form, besides possibly some isolated Co-bonds, a 
number 8 of (connected, closed) polygons of alter
nating Co-bonds and non-Co-bonds. An example 
may be found in Fig. 1 of Kasteleyn, l who also 
shows that 

8p = (-I)' (4) 

and that (p. 1214 of reference 1) the number of 
strips in each polygon is odd. 

3. A PROPERTY OF THE PERMUTATION FACTOR 

Since all Co-bonds are horizontal, all vertical 
bonds in each polygon must be non-C o-bonds. Since 
the boundary of each strip contains exactly two 
vertical bonds, it follows from the last remark of 
Sec. 2 that the number of vertical non-Co-bonds 
in each polygon must be twice an odd number. 
Thus it follows from (4) that 

(5) 

Let (j, k) and 0', k') be two lattice points such 

1265 
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that j ~ j' and, if j = j', k < k'. Let D(j, k; j', k') 
be defined by 

{

D(j, k; j + 1, k) = z, 

D(j, k; j, k + 1) = Kz', 

D(j, k; j', k') = 0 otherwise. 

(6) 

an l X l matrix defined by 

(QZ)i.i+l = -(QZ)i,i-l = 1, 

other elements being zero. Then 

D = zQ ... X En + iz'E". X Qn. 

(13) 

(14) 

Then the Pfaffian of D is by definition 

Pf D = L opzN(Kz,)N', 
P 

Bya unitary transformation, Qz can be diagonalized 
with the diagonal elements 2i cos [j7r/(l + 1)]. 

(7) Therefore, by (10) and (12), 

where the sum is over all permissible permutations, 
and N(N') is the number of horizontal (vertical) 
bonds in the covering corresponding to P. Equation 
(7) should be compared with the alternative form 
of (2): 

Z (z Z') - "ZNZ,N'. mn, - L. (8) 
p 

Accordingly, by (5), if 

... n 

[Zmn(Z, z')Y = IT IT 2i{z cos [Pr/(m + 1)] 
i-I k-l 

+ iz' cos [k7r/(n + 1m. (15) 

This is the desired answer obtained by Kasteleynl 
and Temperley and Fisher.2.8 

5. DISCUSSION 

K = i, 
It must be emphasized that the present calcula

(9) tion follows almost step by step the beautiful work 
then 

Zmn(Z, z') = Pf D. (10) 

Thus the generating function is expressed as a 
Pfaffian. 

4. EVALUATION OF THE PFAFFIAN 

Let D be extended to be an antisymmetrical 
matrix by 

{
D(j, k; j, k) = 0, (11) 

D(j', k'; j, k) = -D(j, k; j', k'), 

then 

Pf D = (det Dy/2. (12) 

of Kasteleyn1 and Temperley and Fisher.2.3 The 
only new point here is the connection between op 
and N', as expressed by (5). However, this simple 
observation does make the calculation shorter and 
more transparent, In Kasteleyn's assignment of ±1 
to the vertical bonds and in Fisher's reversal number
ing of lattice points, loosely half of the translational 
symmetry is lost. By using the simple relation (5), 
the full translational symmetry can be maintained, 
and this leads to a sizable saving of labor in evalua
ting the Pfaffian. 

ACKNOWLEDGMENTS 
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Let EI be the l X l identity matrix and Qz be Montroll. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3. NUMBER 6 NOVEMBER-DECEMBER 1962 

Approximate Solutions of the Modified Bloch Equations for Low Magnetic Fields 

RICHARD J. RUNGE 

California Research Corporation, La Habra, California 
(Received June 5, 1962) 

A se~ of modified Bloch equations ~roposed by Torrey, Olds, and Codrington for the description 
of the time dependence of the magnetic moment expectation value in low magnetic fields is solved 
using two approximatt: methods. T~e equat~ons are solved approximately for the steady ;tate with 
a cons~ant field a~d llflea:ly polanzed radio-frequency field applied and an error analysis of the 
!l'pproXl~ate sol~tlOn IS gIv:en. A low-harmonic solution is developed and alternative numerical 
Integra~lOn techmques are ~ve!l. Result:s are exhibited for the low-field electron paramagnetic reso
nance .In anthracene negat~ve IOn ~olutIon and asphaltene. The methods developed are applicable 
to a WIde range of frequenCIes, applied field strengths, and ratios of transverse to longitudinal relaxa
tion times. 

I. INTRODUCTION 

WITHIN recent years, efforts have been madel-a 
to improve the formulation of the problem of 

magnetic resonance and associated phenomena in 
its macroscopic aspect by modifying the equations 
given originally by Bloch4 that govern the time 
dependence of the magnetic moment expectation 
value M of a single magnetogyric species in an 
applied magnetic field H. These modifications con~ 
sist principally in introducing, in a phenomenological 
way, damping and driving terms of a more general 
sort than those given by Bloch in his original 
treatment. It is hoped, in these formulations, that 
a wider range of applied fields and frequencies can 
be properly included in these modified models. 

In the low-field problem it is clear that the 
Bloch equations cannot apply since they are formu
lated for essentially the opposite case; hence, in 
order to better understand low-field phenomena, 
some modified set of equations must be considered. 
We chose to investigate a set of modified Bloch 
equations (MBE) proposed by Torrey, OIds, and 
Codringtonl (TOC) since these appeared to be as 
general as any we could find in the sense that no 
restrictions on magnetic field amplitudes, frequency, 
or ratios of relaxation times were obviously imposed 
by the semiquantitative arguments used to support 
the case that such a system of equations might hold. 

Specifically, we set out to obtain the best ap
proximate steady-state solutions we could find to 
these equations for the case of a constant applied 
field in one direction with a linearly polarized radio-

I H. C. Torrey, J. D. OIds, and R. S. Codrington, Tech. 
Report, Nonr-45403, U. S. Office of Naval Research. 

2 A. Abragam, Principles of Nuclear Magnetism (Oxford 
University Press, New York, 1961). 

3 E. M. Purcell, Supp!. Nuovo cimento 6, No.3, 961 (1957). 
, F. Bloch, Phys. Rev. 70,7 (1946). 

frequency field applied perpendicular to the con
stant field, for all possible field amplitude ratios, 
frequencies, and values of the longitudinal and 
transverse relaxation times. 

In Sec. II some general properties of the solutions 
of the TOC-MBE are discussed, and their bearing 
on the methods of solution will become clear. In 
Sec. III, an error analysis applicable to a certain 
class of approximate steady-state solutions is de
veloped and a set of functions, called saturation-fre
quency functions, are introduced that enable us to 
apply sufficient conditions in estimating the validity 
of particular approximate methods of solution. 
Section IV treats the solution of the equations in the 
general case via a method, previously applied by 
TOC/ Purcell,3 and Garstens and KaplanD to the 
case of equal relaxation times, which consists of 
keeping only the lowest harmonic terms of a Fourier 
series expansion of the solution. In Sec. V, this 
approximate method is developed in detail for the 
case of equal relaxation times in such a manner that 
saturation (by the rf field) can be included. Sec
tion VI proceeds to re-examine the problem from a 
numerical methods point of view and develops the 
solution of the MBE through forward numerical 
integration from an arbitrary starting point or from 
a st.art.ing point near the steady-state solution, 
using a Runge-Kutta solution to the MBE. The 
numerical approach is needed when the sufficient 
conditions for validity of the low-harmonic approxi
mate solutions fail to hold; this is an augmenta
tion to the analytical procedure. It is planned to 
present experimental results on low-field EPR in a 
subsequent paper. 

1M. A. Garstens and J. I. Kaplan, Phys. Rev. 99 459 
(1955). ' 
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n. MODIFIED BLOCH EQUATIONS 

Letting M be the magnetic-moment expectation 
value, H the applied field, "I the magnetogyric 
ratio, XO the static susceptibility, and T} and T2 
the longitudinal and transverse relaxation times, 
respectively, the TOC-MBE can be expressed} as 

(d/dt)M + M/T2 + (l/T} - 1/T2)(M·H/H2)H 

- "1M xH = Hxo/T}. (1) 

Inspecting (1) we see that when M and Hare 
perpendicular, the term in M·H vanishes, and 
M relaxes at a rate 1/T2 ; however, if M = foB, 
M relaxes at a rate liT}. When T} ~ T2, the term 
in M·H complicates Eq. (1) considerably from an 
algebraic point of view. 

We observe from (1) that the homogeneous equa
tions associated with (1) are linear in M, but not in 
H. Thus, if M" solves Eq. (1) with H = H. and 
Mb solves Eq. (1) with H = Hb, then M. + M. 
can at best be only an approximate solution of (1) 
when H = H" + H b • It is for this reason, in weak 
field problems, that one cannot represent a linearly 
polarized rf field as the sum H+ + H_ of two 
oppositely rotating, circularly polarized fields (a well
known device in strong field problems involving 
the original Bloch equations) and expect the solu
tion M to be the sum M+ + M_ of the two circu
larly polarized solutions, even approximately. Thus, 
we are forced to solve (1) directly using a linearly 
polarized rf field if we want the solution for such 
an rf field. 

We take H to be of the form 

H = (2H1 cos c.Jt, 0, Ho), (2) 

where c.J = 2rf is the circular frequency of the rf 
field, and Ho is constant. Placing (2) in (1), the 
equations become, when written out, 

(dldt)Mz + MzIT2 + (liT} - 11T2 ) 

X (Mflz + M.Ho)HzIH2 

- 'YHoM. = xoHz/T}, (3a) 

(d/dt)M. + M.IT2 + 'Y(Mflo - M.Hz) = 0, (3b) 

(d/dt)M. + M.IT2 + (llTl - l1T2) 

The weak field case is characterized by having HI 
comparable to or greater than H o. Our special 
emphasis will be on the weak field case; however, 
we shall develop steady-state solutions to Eqs. (3) 
for all values of HI, Ho, and thus obtain, among 
other things, Bloch's original solutions. 

If G is a solution of the homogeneous version of 
(1), then we have, for such a transient solution, 

(dldt)G + GIT2 + (llTl - l/T2)(G'H)H/H2 

- 'YG xH = 0, (5) 

and hence G satisfies 

~ G = _(sin2 8(t) + cos
2 

8(t»)G (6) 
dt T2 TI' 

where 8(t) is the angle between G and H. Thus, 
G is of the form 

G = Go exp [-I' (sin
2 8 + cos

2 8) dt'] , (7) 
" \ T2 Tl 

where the trigonometric quantity is always positive 
and lies in the range 

l/Tl :::; sin2 81T2 + cos2 8/T1 :::; 11T2 , (8) 

since TI ~ T2 • Thus, we arrive at the result that 
any transient solution of (1) will decay in magnitude 
to zero with increasing time at a rate no slower than 
e-t/T, decays. If T* is the time a transient solution 
of (1) decays bye-2 (about one order of magnitude), 
then 

(9) 

Let T be the period of the rf field, then T = 2r I c.J. 

A quantity useful in our numerical discussion is K*, 
where 

K* = 2Tt/T. (10) 

The positive integer closest to K* is a measure of the 
minimum number of rf cycles which must elapse 
before we can be certain that transient solution of 
(1) has decayed to l/e2

• 

Now suppose M is a solution of (1) and let A(t), 
the aperiodicity, be 

A(t) = M(t + T) - M(t). (11) 

X (MzHz + M.Ho)HoIH2 

+ 'YHzM. = xoHo/Tl' 

Then, if H(t) is periodic of period T [this includes 
H of (2)], we have from (1) that A is a solution of 

(3 c) the homogeneous equation 

where (dldt)A + A/T2 + (11T1 - IIT2)(A.H)H/H2 

H" = 2HI cos c.Jt, (4) - 'YAxH = 0, (12) 

H2 = 4H~ cos2 c.Jt + H~ . which is (5). Hence, from (7) et seq., we have the 
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result that A decays t.o zero at a rate no slower 
than I/T1 , i.e., in K* rf cycles the aperiodicity in 
M must be down by l/e2

• Thus, in the case of a 
7-periodic H, the solution approaches a steady
state, periodic function of period 7 with transients 
disappearing at the above rate or faster. One can 
show, for H given by (2), that M is also bounded 
above by xo(H~ + 4H~)l/2 as the steady state is 
approached; hence, in the linearly polarized har
monic case, M describes an orbit in the steady 
state and is periodic of period 7 and interior to a 
sphere of radius xo(H~ + 4H~)1/2. 

Considering such a periodic M(t) which solves 
Eqs. (3), we can, by changing the variable in (3) 
from t to t + 7/2, demonstrate that the components 
of M(t) satisfy 

Mz(t + 7/2) = -Mz(t) , 

M.(t + 7/2) = -Mit), 

M.(t + 7/2) = M.(t). 

(13a) 

(l3b) 

(13c) 

Thus, in view of these remarks, including Eqs. 
(13), we are justified in assuming that the periodic 
steady-state solutions of (3) can be written as 

Mz = Al cos wt + Bl sin wt 

+ (higher odd harmonics), (14a) 

M. = CI coswt + DI sinwt 

+ (higher odd harmonics), (14b) 

M. = Mo + Kl cos 2wt + J l sin 2wt 

+ (higher even harmonics). (14c) 

m. ERROR BOUNDS FOR APPROXIMATE SOLUTIONS 
OF THE MODIFmD BLOCH EQUATIONS 

In general, let M. be an exact solution of (1) 
while M. is an approximate solution to (1) given 
by some method of constructing such which is under 
investigation. Since M. is not an exact solution of 
(1), the result of placing M .. in (1) will yield 

2:.. Me + M. + (l _ l)(M. '!l)H 
dt T2 Tl T2 H 

- 'YM.xH - XJI/Tl = o(t) , (15) 

where oCt) is a discrepancy vector. We define a 
difference vector E(t) between M. and M. as 

I:(t) = M. - M •. (16) 

Hence, combining (15), (16), and (1), we note that 
E(t) satisfies 

2:..E +...!.. + (l_l)(E.H) H2 
dt T2 Tl T2 H 

- 'YE X H = o(t). (17) 

Plainly, if M. = M., 0 = o. The scalar multiplica
tion of E t.hrough (17) yields the equation 

2:.. E = _E(sin
2 

(J + cos
2 

(J) + 0 cos 1/1, (18) 
dt T2 Tl 

where (J(t) is the angle between E and H while !/I(t) 
is the angle between I: and o. 

Now consider the class of approximate solutions 
to (1) which have a discrepancy vector 0 which 
is bounded for all t by Om.,., i.e., 

(19) 

From (18) we have the result that dE/dt < 0 when
ever 

Since 0 cos !/I ~ omax, we can then say that if 

E(sin2 (J/T2 + cos2 (J/Tl) ~ omax (21) 

holds, then (20) holds and hence (d/dt)E < o. For 
7\ > T2 , a sufficient condition for (21) to hold is 

(22) 

since sin2(J/T2 + cos2 (J/Tl ~ I/Tl . 
Thus, from (22) if E is in excess of TI omax, (d/dt)e 

will be negative, thus the error cannot grow in
definitely when 0 is bounded above. Now, if M. 
and M. are continuous, then E is also continuous. 
If the approximate method which provides us with 
M. is adequate enough to reduce E below Tl Omax 
at some time t = to, then for all t ~ to, E will remain 
below Tl omax. This follows from the continuity of 
E and the fact that (d/dOE is negative if E exceeds 
Tl omax, i.e., E cannot pass through TI 0_ from 
below with positive slope and, hence, being con
tinuous, cannot escape the upper bound Tl OlllJax 
once below it. 

We shall now develop some criteria applicable 
to methods for solving (1) approximately in the 
steady state [H being given by (2)] which will enable 
us to assert sufficient conditions, given the bounded
ness of 0 and E, for the validity of those approxi
mate solutions in a mean square sense. 

One would like to have an approximate solution 
M. close enough to M. such that IE/M .. I was small 
compared to unity at all times. This is exceedingly 
stringent, however, and we shall adopt a compro
mise criterion, namely that '1, given by 
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(23) SF functions S"" Su, S. as 

be small compared to one. 
In the steady state, M" will be required to be 

periodic of period T in order that the method yielding 
it be acceptable; hence, I: will be periodic, and the 
time average can be taken over one period of dura
tion T. Thus, in the steady state, the value of 7} is 
independent of the end points of the averaging 
interval, so long as this interval is of length T, and 
we can state our minimum criterion as 

7} « 1. (24) 

Sufficient conditions for (24) to hold in the case 
of bounded 8 and E are as follows. Let f fall below 
Tl 0 ... , .. , at t = to, then for all t ;::: to 

(25) 

Hence, 

(l)av ~ T~ 8!ax, (26) 

and thus 7J is bounded above by 

7} ~ TI Omax/«M!)av) 112. (27) 

Consequently, (24) will hold provided 

r /[(M!)av]1/2« 1 (28) 
umax Ti . 

Now if in the steady state, Om .... and (fl)&Y are 
com~arable (a circumstance which will prevail in 
the method to be developed later), then the strong 
inequality (28) can be replaced by the strong in
equality, 

[(02)av] 1/2 / [<~;lav ]'/2 « 1. (29) 

Thus, (29) is sufficient to ensure (24). Inequality 
(29) suggests a definition, namely, if we call S the 
saturation-frequency (SF) function where 

S2 = (02)av / (~yav) , (30) 

then (29) is 

S« 1, (31) 

and the smallness of the saturation-frequency func
tion S compared to unity is a sufficient criterion for 
(24) t~ hold and thus guarantees that M" is an 
adequate mean square approximation to M. in the 
steady state. The use of this terminology will be
come clear below where S will be directly related to 
the saturation "lH~TIT2 and the rf frequency w. 

One can proceed further and define component 

82 = (02 ) /(M!",.~ .• )av) (32) 
Z.tI,Z 1:,11,% BV T: ' 

where 0"" Qu, O. are the 0 components and M"z, 
M M are the components of M". Then the "., ... 
inequalities 

(33) 

are sufficient to guarantee component-wise that 

'f/",.u •• « 1, (34) 

where 

( 
(E! .•.• )av )1/2 (35) 

7}"' •••• = (M2 ) . 
ax,'II.z BV 

The reason for introducing component SF func
tions came about from the experience in certain 
cases that S could be small, because of the large 
size of (M!)av while a component (usually Su) was 
comparable to unity, due to the fact that the mean 
square value of an M" component was small com
pared to (M!)n while the corresponding E com
ponent was not proportionally diminished. Conse
quently, we sharpen our criterion of acceptability 
of a solution to include (34) and (24). Note that 
(34) implies (24), hence, our sufficient conditions 
for (34) to hold are now (33) and its implicate (31). 

Our standard procedure is thus to obtain M", 
following the prescription of the approximate 
method, then use Eq. (15) to compute o. Equations 
(32) and (30) are then employed to evaluate the 
SF functions 8, S"" Su, and S., and, if these are all 
small compared to unity, the result (M,,) is ac
cepted with confidence. 

IV. LOW HARMONIC SOLUTIONS. 
THE GENERAL CASE 

Consider the problem of solving Eqs. (3) approxi
mately in the steady state. Our method will be to 
employ the lowest harmonic terms in the Fourier 
series expansions (14) of M, that is, we shall discard 
all odd harmonics in M z, M u from the third on and 
all the even harmonics in M. from the fourth on. 
Torrey/ Purcell,a and Garstens3 followed the same 
method for the case Tl = T2 • However, they 
discarded in addition the second-harmonic terms 
in M c' Attempting to keep all the harmonics would 
lead to an infinite system of equations in an infinite 
number of Fourier coefficients, hence some trunca
tion procedure is indicated. 

The truncated series of our method are therefore 

M", = Al cos wt + Bl sin wt, (36a) 
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M~ = Cl cos wt + Dl sin wt, (36b) Al(1 + f30 + 380T2HD + wT2Bl(1 + (30) 

M. = Mo + Kl cos 2wt + J l sin 2wt. (36c) - woTil + f3o)Cl + 80T2HoHlKl 

A quantity of considerable interest to us is the 
complex Bloch susceptibility x" defined through 

11' d 2wH~x"(w) = - H·- Mdt 
7" 0 dt 

for the steady state. The quantity 2wH~x" J.I. is the 
average, over one rf period, of the rate of energy 
absorption of the magnetogyric species per unit 
volume. For the linearly polarized H given by (2), 
one obtains from (36) and (37) that x" is (whether 
higher harmonics in M are kept or not) 

(38) 

+ 280T2HOHlMo = 2HlT2xo(1 + f3o)ITl , 

WOT2Bl - wT2Cl + Dl - wlT2J l = 0, 

- 2WIT2MO = 0, 

80T2HOHlBl + wlT2 Dl - 2wT2K l 

+ (1 + OOT2H~)Jl = 0, 

80T2HOHlAl + wlT2(1 + 2(30)Cl 

+ K l(l + OOT2H~) + 2wT2J 1 

+ 2f3oMo = 2f3oxoHoTdTl , 

(44b) 

(44 c) 

(44d) 

(44 e) 

(44f) 

Consequently, the Fourier coefficient Bl is of par- 8oT2HoHlAl 
ticular interest. 

If we now place the low-harmonic expressions (36) + wlT2(1 + fJo)C l + fJOKl + 2wT2fJOJ l 

in Eqs. (3), we obtain a set of two equations from + M (1 + 0 T H2) U TIT o 0 2 0 = X()-lL 0 2 1 • 

(3a) and (3b) of type 
(44g) 

( ... ) cos wt + ( ... ) sin wt = o/t) , 

( ... ) cos wt + ( ... ) sin wt = o.(t) , 

and a third, from (3c), of type 

(39a) 

(39b) 

( ... ) + ( ... ) cos 2wt + ( ... ) sin 2wt = o.(t) , (39c) 

the components of the vector 0 appearing as the 
terms involving harmonics higher than the second 
which have been shifted to the right side of the 
equations. At this point, no restrictions have been 
placed on the Fourier coefficients of Eqs. (36). 
Setting the quantities in parentheses in Eqs. (39) 
equal to zero imposes such a restriction; however, 
the result is not an exact solution of Eqs. (3) but 
an approximate one, since 0, which is now the 
discrepancy vector defined in (15), does not vanish. 
We set the bracketed quantities in Eqs. (39) equal 
to zero, then, and obtain a system of seven equa
tions in the seven Fourier coefficients AI, B l , Cl, 
D l, K l , J l , M o, namely, after abbreviating 

(30 = HU(H~ + 2HD, 

Wo = "rHo, 

WI = "rHl' 

we obtain the set 

- A lwT2(1 - (30) + B t (1 - f30 + 80T2m) 
- wOT 2(1 - (30) Dl + 8oT2HoHIJl = 0, 

(41) 

(42) 

(43) 

(44a) 

The components of the discrepancy vector turn 
out to be the finite quantities in the third and 
fourth harmonics, 

0% = -HI cos 3wt[(1IT2 - 1ITI) 

X (HlAI + HoKl) - Hlall ] 

- HI sin 3wt[(1IT2 - 11Tl) 

X (HIBI + HOJ I) - Hlb ll ], (45a) 

Oy = -wl(Kl cos 3wt + J l sin 3wt) , (45b) 

o. = H~(aI3 cos 4wt + bl3 sin 4wt), (45 c) 

where we have 

au = wBl + AIIT2 - WOC I - 2HlxolTI, (46a) 

bll = BIIT2 - WAI - Wo D I , (46b) 

a l 3 =,2wJl + KlIT2 + WICI , (47a) 

b13 = J 1IT2 - 2wKl + WI D I • (47b) 

It is then clear from Eqs. (45) that, for each 0 
component as well as 0 itself, we have 

(48) 

Hence, saturation-frequency functions, defined 
through (30) and (32), are appropriate. Thus, S, 
SZI Sy, and S. can be calculated from (30), and (32) 
using the expressions 

(M!> .... = !(A~ + B~), 
(M:> .... = !(~ + D~), 

(49a) 

(49b) 
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(M!).v = M~ + !(K~ + J~), (49 c) 

obtained from Eqs. (36) and the expressions 

(c5!)av = !H~{[(1/T2 - 1/T1)(H1 A 1 

+ HoKl) - H1all ]2 + [(1/T2 - 1/T1) 

X (HIBI + HOJ1) - H1bll ]2}, 

(15:) ... = !w~(K~ + J~), 
(c5!)... = !Ht( a~3 + b~3)' 

(50a) 

(SOb) 

(50 c) 

obtained from Eqs. (45). From (50b) we note that 
the rms value of 15. is proportional to the amplitude 
of the time dependent part of M. of (36c). 

Attempts to solve Eqs. (44) algebraically for the 
Fourier coefficients were begun and then abandoned 
in favor of a computer approach. These equations 
are solved for a given wand a given set of HI, Ho, 
-y, Xo, T1 , and T2 by a program written for an IBM 
type 7090 computer. The program also computes the 
SF functions of (30) and (32) via Eqs. (44), (46), 
(47), (49), and (50) and x"/xo from (38). The com
plete job is accomplished in about 1/2 sec for a 
given frequency, the output is then our solution and 
consists in a listing of All BII GI, D 1 , M o, K

" 
J I; 

S, Sz, S., S., and x"/xo. Having this information, 
the SF functions are then inspected to see if sufficient 
conditions hold which enahle us to have confidence 
in the results. 

In order to test the low-harmonic approximation, 
a known exact solution of Eqs. (3) is employed. 
This is the linearly polarized Debye case, Ho = 0, 
H" = 2H, cos wt. In this case, the solutions of 
Eqs. (3) are as follows, M. and M. decay to zero 
at a rate I/T2 as t increases while Ms satisfies (3a) 
which becomes 

(51) 

Hence, in the steady state, M. = M. = 0 while 

M 2xoH, ( T· ,,= 1 + w2T; coswt.+ Iwsmwt). (52) 

Consequently the only nonzero Fourier coefficients 
are AI and B

" 
where 

AI = 2H,x' = 2xoHrI(I + w2T~), (53) 

B, = 2H,x" = 2xoHITlw/(I + w2TD, (54) 

and we note that (54) yields the familiar Debye 
absorption law 

x" /xo = wT,/(l + w2TD· (55) 

Plainly, in this case, no higher harmonics are 

needed for an exact solution; hence, I) = 0, thus 
the SF functions must all vanish. 

When the computer program for solving Eqs. 
(44) is employed using Ho = 0 as input, the above 
statements are confirmed in every detail to within 
the limits of accuracy of the IBM 7090 (i.e., the 
S, Ss values are of the order of 10-10 or so, rather 
than being exact zeros). 

An additional test of the low-harmonic method 
was made in connection with a Bloch case problem. 
These are the strong-field cases for which the 
inequalities 

H,/Ho« 1, 

I(w - wo)/wol « 1, 

(56) 

(57) 

hold, i.e., strong-field problems involving a pro
nounced Larmor resonance absorption at Wo = -yHo. 
The original Bloch theory using a circularly polarized 
field superposition and the original unmodified 
Bloch equations, yields for such cases the familiar 
result' 

x" = WOT2 
Xo 2(1 + T:(wo - W)2 + -y2HiT,T2) , (58) 

for the complex part of the susceptibility. The solu
tions of Eqs. (44) using the low-harmonic method 
will then provide us with, among other things, a set 
of x" / Xo values for a linearly polarized rf field to be 
compared with (58). A hypothetical electron reso
nance problem was computed in which T, = 10-6 

sec, T2 = 10-7 sec, -y = I'Y.I = 1.76 X 107 0-1 

sec-t, Ho = 6.28320, and HI = 10-3 O. In this case, 
WOT2 = 11.058 while -y2HiTIT2 ~ 10-3

; hence, the 
case is a highly unsaturated one and the inequality 
(56), holds strongly. The Bloch equation (58) is 
insensitive to T ,. The resonance frequency here 
is to = wo/21r = 1.76 Me and several frequencies 
above resonance were used to compute x"/xo 
from Eq. (58) and then from our Eqs. (44). Results 
are shown in Table I for this problem. 

The results of our calculation showed that Ss 
exceeded all the other SF functions (S was of the 
order 10-8

) and hence only S" is listed above. It is 
more than adequately small for acceptance of our 
solution as an accurate one over the entire fre
quency range. The agreement between the two 
theories is best at resonance, where the discrepancy 
is only about 0.2%. The steady deterioration of 
x"/xo, obtained from the familiar Bloch equation 
is clear in column 2 out on the higher frequenc; 
wings of the curve. This is not surprising inasmuch 
as at high frequencies (57) begins to weaken, i.e., 
I(w - wo}/wol = 0.28 when t = 2.26 Mc/sec. 
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V. LOW HARMONIC SOLUTIONS FOR EQUAL 
RELAXATION TIMES 

The case Tl = T2 provides a considerable simplifi
cation to the problem of solving the MBE. This 
case can occur in exchange narrowed paramagnetic 
resonance. It has been considered by Torrey/ 
PurcelV and Garstens6 using minor modifications 
of the low-harmonic method used here. None of 
these authors, however, have given a theoretical 
error analysis of their results. In this case, Eq. (1) is 

d M xoH - M + - - 'YM xH = -
dt T2 T2 ' 

(59) 

and Eqs. (3), for the linearly polarized rf field 
are correspondingly simplified. Assuming that the 
steady-state solutions can be approximated by the 
low-frequency expressions (36), the general equa
tions (44), in this case (note 80 = 0) reduce to 

T2bu = -wT2 A I + BI - WOT2 DI = 0, (60a) 

T2au = Al + wT2BI - wOT2CI - 2xoHI = 0, (60b) 

WOT2BI - wT2CI + DI - wlT2J I = 0, (60c) 

AlwoT2 + CI(1 + 2w~T~) + wT2 DI 

- K lwlT2 = 2xoHoWlT2' (00d) 

T2bl3 = wITz DI - 2wTzK I + J I = 0, 

T2al3 = wlT 2CI + KI + 2wT2 J I = 0, 

(60e) 

(60f) 

Mo = xoHo - wITzCI' (60g) 

Hence, in this case we have from (60a) , (60b) 

all = bll = 0 (61) 

and from Eqs. (60e) and (60f) 

(62) 

Consequently, from Eqs. (45), we obtain zero dis
crepancies in x and z, 

(63) 

The discrepancy ~., however, does not vanish and 
has a mean square value 

<~!)a" = (wU2)(K~ + J~). (64) 

Thus for TI = T2 , S~ = S. = 0, and S < S. since 
(M2).v > <M~)." while (~2)." = <~!) .... We need 
only to concern ourselves with the SF component 
function S. in this case. 

From Eqs. (60e) and (60f), we obtain 

(65a) 

TABLE 1. Comparative values of x" /,,0, Bloch case. 

x" /xo x" /xo 
J(frequeney) Eq. (58) Eqs. (44), (38) 

1.76 Me/sec 
1.86 

5.529 5.540 
3.964 4.201 

0.457 X 10-6 

0.559 X 10-6 

0.667 X 10-6 

0.781 X 10-6 

0.901 X 10-6 

1.027 X 10-6 

1.96 
2.06 
2.16 
2.26 

2.144 2.399 
1.214 1.433 
0.756 0.939 
0.509 0.664 

wITz(2wT2CI + D 1) 

1 + 4w
2T: (65b) 

Applying Eqs. (65) to (64) we obtain 

(fl) = w~(wIT2? (D~ + C~) (66) 
" a.. 1 + 4w2T: 2 ' 

Hence, using (36b), we obtain the result from (66) 
and (32) that 

S ( ) 
(WI TZ)2 

"W = (1 + 4w2T;l'2' (67) 

At zero frequency, we set 

So = S,,(O) = (wITz)2 = ('YHITz)
3 

• (68) 

Thus, we see that So is the familiar saturation 
term 'Y2H~TIT2 for the case Tl = Tz, thus S.(W) , 
which is expressible as 

S,,(w) = (1 + :;2T;)1/2 =::; So, (69) 

depends on the saturation So and the frequency w; 
hence, the name saturation-frequency function. We 
observe from (69) that even in saturated cases (So 
comparable to or greater than unity), S" will be 
small compared to unity if the frequency w is 
sufficiently large. Hence, the low-harmonic method 
will provide accurate solutions in saturated cases, 
provided the frequency is high enough so that 
S. « 1. In all unsaturated cases, So « 1. hence SIt 
will be small compared to unity regardless of the 
frequency. Consequently in all unsaturated cases, 
the low-harmonic method will yield accurate solu
tions of Eqs. (3) with TI = Tz• This last remark 
holds even if HI »Ho. In the Bloch cases, for which 
inequalities (56) and (57) hold, we have at w = Wo, 
if woT, » 1, 

S f) '" ~ = wl T 2 (HI). 
II\WO '" 2woTz 2 Ho (70) 

Therefore, in saturated Bloch cases, the low-har
monic solutions are valid for frequencies near and 
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beyond resonance provided 'YHITz is small compared 
to 2Ho/H1 • 

Equations (60a) through (60d) can now be solved 
for the remaining Fourier coefficients. We obtain for 
C1 and Dl the results 

(71b) 

The solutions for Al and Bl are obtained for the 
case 

(72) 

(71 a) as 

X' Al [2(1 + So)w2T~ + (1 + 2So + w~T~)(l + T~(w~ - w2»] 
Xo = 2Hl xo = II + T~(w~ - W2)]2 + 4W2T~ + 2So(1 + T~(w~ + w2» 

(73a) 

and 

B _ 2xoH I[2wT2(1 + 2So + w~T~) - wT2{1 + 2So + (w~ - w2)Tm. 
I - [1 + T~(w~ - W2)]2 + 4w2T~ + 2So[1 + T;(w~ + w2)] 

(73b) 

From Eqs. (38), (68), and (73b) , we obtain the value of x"lxo, subject to small S., as 

"1 - wT2(1 + w2
T: + w~T: + 2w~T~ 

X xo - [1 + T;(w2 - W~)]2 + 4w~T: + 2w;T~[1 + T;(w~ + w2)] 
(74) 

in which the saturation term, So = w;T~, appears 
directly. Formula (74) is equivalent to one given 
earlier by Garstens5 and Kaplan for HI twice the 
value used here. Garstens ignored the second har
monic M. terms in his analysis; however, this does 
not effect the solution for Al and B I , provided (72) 
holds. 

In the unsaturated cases, the term 2w~T; in (74) 
has a negligible effect and (74) reduces to 

(X") wT2(1 + w2T~ + w~'l';) (75) 
xo u. s. = [1 + T~(W2 - W~)J2 + 4w~T~' 

Equation (75) is equivalent algebraically to results 
given earlier by Torreyl and then by PurcelV the 
latter using twice our HI. It should be emphasized 
that (74) and (75) are all-field results subject only 
to the restriction of small S., i.e., (72). If we set 
Wo = 0 in (74), terms cancel and (74) reduces to 
the Debye result, (55). In addition, if inequalities 
(56) through (57) hold and terms such as 
w + Wo are replaced by 2 Wo in (74), then (74) reduces 
to the Bloch theory Eq. (58) for Tl = T2 in the 
saturation term, provided WOT2 » 1. 

A discussion of the case Tl = T2 with its particu
larly simple SF function, S. of (69) reveals some
thing about the circumstances under which low
harmonic solutions might be expected to fail. In 
cases of high saturation, where the numerator So in 
(69) is not small compared to unity and for fre
quencies w low enough so that the denominator in 
(69) does not outweigh this effect, S. would not 
be small compared to unity and our confidence in 
the accuracy of the low-harmonic solutions would be 
shaken. 

Such cases, if they arise in general for TI ~ T2 
or TI = T2, can often be resolved by means of the 
numerical methods of the next section. 

VI. NUMERICAL METHODS FOR SOLVING THE 
MODIFIED BLOCH EQUATIONS 

In cases where one or more of the SF functions 
are not small compared to unity, numerical methods 
can be successfully used to obtain the steady-state 
solutions of Eqs. (3). The exact solution of Eqs. (3) 
can be written as G(t) + M(t), where G(t) is a 
transient satisfying the homogeneous version of 
Eqs. (3) while M(t) is the steady-state solution we 
are after. 

One can solve Eqs. (3) by taking an arbitrary 
starting value G(O) + M(O) = Mo and then for
ward integrating the equations numerically out to 
some time t. If the starting value, Mo, is equal to 
the true steady-state value of M(t') for some t' 
in 0 :::; t' :::; T, then G(O) = 0 and the numerical 
integration gives the steady-state solution at once. 
If this fortuitous circumstance does not occur, then 
G(O) ~ 0, and the numerical integration must be 
carried out far enough so that the transient G(t) 
will decay in accordance with Eq. (7) to an in
significantly small value. Thus, in order to be sure 
of reducing such a perturbing transient by about 
one order of magnitude, the numerical integration of 
Eqs. (3) must be carried out through K** rf cycles 
where K** is the integer closest to K* of (10) and 
above K*. 

Once the transients have been reduced by a 
sufficient amount, the numerical solution becomes 



                                                                                                                                    

SOLUTIONS OF MODIFIED BLOCH EQUATIONS 1275 

noticeably periodic and the degree of periodicity, 
measured by the smallness of 

(IM(t + T) - M(t) 12)av/(M2)av (76) 

can be used to gauge the stopping point of the 
forward integration. A simpler rule, however, would 
be to require that IM(t' + T) - M(t')l be a small 
fraction of rms ]}[ for a few selected values tf in 
t ~ tf ~ t - T. 

If K** is a large integer, then a casual approach 
is not recommended in choosing the starting value 
Mo. In cases of this type, we successfully used the 
low-harmonic solutions of Sees. IV and V in some 
instances, to provide the starting value Mo. In 
such cases, the numerical solution is assisted by the 
low-harmonic theory, the idea being that even when 
the low-harmonic results are associated with SF 
functions comparable to or large compared to unity, 
they may still be close enough to the correct results 
since the SF functions are essentially upper bounds 
to the error. Should this in fact be the case, the 
numerical solutions will quickly bear it out. In 
using the low-harmonic theory to assist the numeri
cal integration, we conveniently set t = 0 in Eqs. 
(36) and take as starting values the Mo components, 

Moz = AI, 

Moy = CI , 

(77a) 

(77b) 

(77 c) 

where AI, CI , M o, and KI are obtained from the 
solution of Eqs. (44). 

When K** is a relatively small integer, it makes 
little difference what starting value of Mo is chosen, 
provided G(O) is not excessively large. Taking any 
Mo inside the steady-state sphere of radius 
xo(H~ + 4HDI/2 guarantees that Go cannot exceed 
the diameter of this sphere. We customarily took 
Mo = 0 in small K** cases (i.e., K** ::; 10), starting 
in effect from quiescence. 

The numerical scheme chosen to perform the 
forward integration of Eqs. (3) was the Runge
Kutta scheme suitable to three simultaneous first
order equations,6.7 i.e., Eqs. (3). This method also 
goes by the name7 of Kutta's Simpson's 1/6th rule. 
Using this rule, Mz(t + t1t), for example, is given as 

where 
S L. Collatz, The Numerical Treatment of Differential 

Equations (Springer-Verlag, Berlin, Germany, 1960), 3rd ed.
translated, Chap. II, Sec. 2. 

7 H. Levy and E. A. Baggot, Numerical Solutions of 
Differential Eruation~ (Dover Publications, New York, 1950), 
1st U. S. editIOn, Chap. III. 

LlMz = Hal + 2a2 + 2aa + a4), (79) 

and the differential quantities a r are coefficients 
evaluated by the prescription of the method and 
are listed in standard references." 7 In using the 
Runge-Kutta scheme, we took time steps t1t normally 
in the range 

T/50 ::; t1t ::; T/l00, (80) 

and obtained very stable results even when the 
forward integration was carried out as far as 4000 
time steps or about 40 to 80 rf cycles. The computa
tion was done via a numerical program written for 
the IBM type 7090 computer. Each calculation was 
run at normal time step t1t and then rerun out to 
the same total time at twice the time step. The 
error in the Runge-Kutta scheme is given6 as 

~RK = IM(2)(t) - M(1)(t)1!15, (81) 

where M(l) (t) is the result at t for normal time step 
t1t and M(2) (t) is the result at t for the same calcula
tion at double time step, 2t1t. 

At the termination of each pair of t1t and 2t1t 
calculations, the error is obtained from (81) applied 
to M z for one or more values of tf in the range 
t - 'T ::; tf ::; t, where t is the total forward integra
tion time. In addition, information is provided by 
the numerical program which enables us to calcu
late ERK. and ERK. at t. Values of M at t and at 
t - T are listed for purposes of checking the peri
odicity attained over the last cycle of the numerical 
integration for both t1t and 2t1t. The numerical 
program also computes x" / Xo directly from the 
integral (37) which in the linearly polarized case 
takes the form, using (37), (1), and (2), 

x" __ T(H~ + 2H~) 1 
2 - 2 

XO 41rTIHI (47rT l xOH I) 

X f (2HIM z cos wt + HoM.) dt. (82) 

The integral in (82) is evaluated by summing over 
elementary rectangles of width t1t in our numerical 
program. This is sufficiently accurate for our 
purposes, especially since At is usually no greater 
than 1/50 of 'T. Normal IBM type 7090 times for 
these numerical solutions of Eqs. (3) were about 
1/15 sec per time step t1t for a given w. Hence, 
for t1t = T/100, 40 rf cycles could be forward inte
grated accurately in about 4.5 min. 

VII. RESULTS 

In Fig. 1, x" / xo is exhibited for a case of equal 
relaxation TI = T2 = 5.07 X 10-8 sec, describing 
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FIG. 1. Anthracene negative ion electron resonance ab
sorption in low fields. For all curves, Ho = 1 G, 'Y ... 1.76 X 
107 G-I sec-I, T2 = TI = 5.07 X 10-8 sec. 

the electron resonance absorption of an exchange 
narrowed solution of anthracene negative ion (ANI) 
with "I taken as the electron value 1.76 X 107 G-1 

sec-I. The figure shows as solid curves x"/xo ob
tained from the solution of the low-harmonic Eqs. 
(44) for HI assuming the values 0.5 and 1.0 G. In 
each curve H 0 is 1.0 G. The dashed curve is a plot of 
Eq. (75) for the limiting case HI « Ho. The fre
quency range is from 0 to 10 Mc/sec. 

The small circles in the figure are the values 
obtained using the Runge-Kutta numerical inte
gration of Sec. VI, taking Mo = O. In this case K* 
of (10) for the shortest period (r = 10-7 sec) is 
K* = 1.014; hence, in one rf cycle or less the aperi
odicity is diminished by an order of magnitude. 
These numerical calculations were carried forward 
through 10 rf cycles with l1t = T/50, and the solu
tions were periodic to one part in 106 at termination. 
Disagreement between M!ll and M!2l occurred only 
in the' fourth significant figure if at all for the l1t 
and 211t calculations. 

For HI = 1.0 G, we have S~(O) = 0.796 and Sv 
does not approach 0.1 until frequencies just beyond 

10 Mc/sec are obtained. Thus, this case is saturated 
over the entire frequency range, particularly at low 
frequencies. Nevertheless, the low-harmonic solu
tion is quite adequate to compute x"/xo. The very 
accurate numerical calculation bears this out, as 
evidenced in Fig. 1. The largest discrepancy be
tween the two was about 3% at 2 Mc/sec. 

For HI = 0.5 G, we have Sv(O) = 0.199, with S. 
diminishing to 0.06 at 5 Me/sec. This shows a 
lower level of saturation than the preceding and 
again the result of the numerical solution for x" /Xo 
is in excellent agreement with the low-harmonic 
value. The maximum discrepancy is 0.3% at 2 
Mc/sec. It should be noted here that we use the 
computed solutions (44) rather than Eq. (74) to 
obtain the solid curves in Fig. 1. 

For HI below 0.25 G, we have S.(O) ~ 0.05 and 
the effects of saturation are negligible. In these 
cases, Eq. (74) [and ultimately (75)] suffices to de
scribed the susceptibility in ANI. 

To illustrate the situation for TI ¢ T 2 , we con
sidered a highly saturated problem involving asphal
tene, using the electron "I, T2 = lO-s sec and taking 
TI = 5 X 10-6 sec. This TI was obtained from 
EPR saturation measurements made by Thompsons 
of the California Research Corporation. The fields 
were HI = 1.0 G and Ho = 0.5 G; hence, the satura
tion term is W~TIT2 = 15.5. Frequencies as high as 
20 Mc/sec were considered and for T = 0.5 X 10-7 

sec, we have for K** the value 200. Thus, in the 
numerical solutions, the starting value Mo was ob
tained from the low-harmonic theory [Eqs. (77)]. 
When Eqs. (44) were solved, it was noted that the 
SF functions were enormous, i.e., S. attained a 
maximum value of 516 at 1 Mc/sec, while the 
smallest, S"" never fell below 58. 

The numerical calculations were carried out 
through 20 rf cycles and then, using the 20-cycle/sec 
solutions as input, were extended another 20 cycles, 
making a total of 40 rf cycles at l1t = T/1oo. No 
change in x" / xo out to the sixth figure resulted 
from this additional computing. Periodicity to one 
part in 106 was obtained, and the error in M s was 
reflected in the fourth or fifth significant figure. 
The results for three selected frequencies are shown 
in Table II. 

At 10 Mc/sec, the discrepancy is about 5% in 
x" /xo values and decreases at higher frequencies. 
Thus, it would appear that assisting the numerical 

8 D. D. Thompson (private communication). The validity 
of extending such Tl values to low fields is a separate problem 
which will not be discllBBed here, even though it may have a 
profound effect on the usefulness of the MBE. 
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solut¥>n with the low-harmonic solution is worth
while i.n this instance, despite the large SF function 
va.lues (a few of which are shown in Table II). 

Closer investigation revealed that the low-har
monic solution was indeed a poor approximation for 
M at the lowest frequency, 1 Me/sec. Equation (36a) 
asserts that in the low-harmonic approximation, Mz 
is a pure sinusoid of frequency. The numerical 
solution, upon reaching the steady state, introduces 
any necessary higher harmonics in M not included 
in the low-harmonic solutions. The numerical pro
gram plots the values of M z for each time step ilt 
over the last rf cycle of integration. This result is 
shown in Fig. 2 in this case for a frequency of 1 
Me/sec, in which it is observed that Mz is not a 
pure sinusoid but contains a significant amount of 
higher harmonics. The presence of these higher 
harmonics, however, has apparently not seriously 
affected the value of B

" 
as evidenced in Table II by 

the small percent discrepancies in x"/xo' The 
numerical calculations of M z over the last cycle for 
frequencies of 10 and 20 Me/sec are somewhat more 
sinusoidal appearing than Mz of Fig. 2, this alone 
being no guarantee of a good solution, however. A 
further point to report on is that very little difference 
exists between M z for the 20th cycle and M z for the 
40th cycle, a fact also reflected in x" / Xo not changing 

TABLE II. x"/x.o values for asphaltene. H, = 1, Ho = i G. 

Frequency 

x"/xo 
[Low-harmonic 

theory, 
Eq. (44)J 

x" /xo 
(Numerical 40 

rf cycles) 

1 Me/sec 3.0465 X 1()-2 2.9213 X 10-1 82 58 516 185 
10 Me/sec 3.3933 X 10-3 3.5712 X 10-3 148 110 182 302 
20 Me/sec 1.7285 X 10-3 1.7889 X 10-3 145 119 89 212 

+0.5 

+0.2 

+0.1 

Mx(t) 
Xo 0 

-0.1 

-1.2 

-0.1 

O.5T t-- T 

FIG. 2. Asphaltene, M z/xo (numerical), 40th and 20th rf 
cycles. The frequency is 1 Me/sec, HI = IG, Ho = I G, T I 
= 5 X 10-8 sec, T. = 10-8 sec. 

noticeably in going from 20 to 40 rf cycles. This 
suggests that the error transients damp out con
siderably faster than at the minimum rate l/T!, 
i.e., they appear to have dissipated themselves before 
the 20th rf cycle was reached. 
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A simple selection rule for integrals of three Bloch functions is derived by using the irreducible 
representations of the complete space group. In the final formula only the characters of the small 
representations appear. 

INTRODUCTION (2) 

WE shall deal in this note with selection rules does not contain the identity representation. The 
for integrals of the form number of times the identity representation appears 

(1) 

where -{lh, -{I,." -{lk" are Bloch functions corresponding 
to the vectors k, k', and kIf. Two papers dealing 
with this question have already been published.1

•
2 

In the first, the representations of the factor group 
G"IT" are used. The selection rule requires, there
fore, the knowledge of all irreducible representa
tions of the factor group. In the second paper 
only the small representations are used, but the 
selection rules are still rather complicated. 

We can look at a function -{I" in (1) in two ways: 
first, as a function of the basis for a small representa
tion of the group of k; secondly, as a function of 
the basis for an irreducible representation of the 
whole space group. Methods for obtaining the 
small representations3

•
4 and the structure of the 

representations of the whole space group are well 
known.3

•
s 

We will show in this note that by using the 
representations of the whole space group, a simple 
selection rule for integrals of the form (1) can be 
derived. 

DERIVATION OF THE SELECTION RULE 

Let us look at the functions -{lie, -{I"., if;"" in (1) as 
belonging to bases for irreducible representations 
r t , r h ., and r k " of the whole space group, and let 
Xk, X,,,, and Xk" be the characters of these representa
tions. The integral (1) equals zero if the direct 
product, 

1 R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 
146 (1960). 

2 M. Lax and J. J. Hopfield, Phys. Rev. 124, 115 (1961). 
3 G. F. Koster, Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5, 
p.173. 

4 J. Zak, J. Math. Phys. 1, 165 (1960). 
i J. Zak, thesis for degree of Doctor of Science, Haifa, 

Israel (unpublished). 

in the direct product (2) is given by 

(3) 

where gh is the order of the space group (h-the 
order of the invariant subgroup of translations H; 
g-the order of the factor group of G with H as a 
subgroup); the summation is over the space group. 

The character Xl< can be written by means of 
the characters ~k of the small representations 'Y, 
of the group of k as follows: 

Let -{Ilk, -{l2I<, ••• , -{Irk be the baRis of the small 
representation 'Yh of the group of the vector k: 

Ca; I ai)-{lmk = l: {A(a; I ai) lm« if;.k ..• , (4) 
• 

where (a. I a;) are the elements of the group of 
k and A(a; I a,) the matrices of the representation 
'Yk. Assign the group of k by K, then the whole 
space group G can be written: 

G = K + «(32 I b2)K + ... + «(3, I b,)K. (5) 

The functions 

if;lk, ... , if;rk, «(32 I b 2)if;lk, ... , 

«(32 I b2)if;rk, "', «(3, I b,)if;rk, ..• , (6) 

form a basis for an irreducible representation of the 
space group G.a This representation is known as one 
formed by the star of k. Moreover, every set of func
tions in (6), for example, «(3; I bi)if;a, .•. , «(3; I b.)if;rJo 
form a basis for a small representation, in this case 
for the group of the vector (3ik == k; (== means 
equal or equivalent).2 The elements of the group 
of k; are 

(7) 

where (a,· I a;) are all the elements of the 
group of k. It is easy to show that the character 

1278 
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~kJ(,B; I b;)(aj I aj)(,B; I b;)-l] of the small representa
tion of the group of k; equals the character 
~k(aj I a;) of the group of k3

: 

~d(,B; I b.)(aj I aj)(,B. I b.)-l] = ~k(aj I aJ. (8) 

By using the form of the basis (6) one can find 
the character Xk of the irreducible representation 
of the whole space group G. Let (0 I d) be any 
element of G. To the character of this element 
Xk(O I d) only those functions of (6) will contribute, 
the k's of which satisfy the condition 0 k == k. 
Hence, 

Xk(O I d) = 1: ~k'(O I d). (9) 
• 

The sum is over all the k;'s in the star of k, satisfy
ing the condition 0 k, == k,. h.(o I d) is the character 
corresponding to the element (0 I d) in the small 
representation of the group of k. in the basis 

({3, I b.)Y;lk' ... , 

We have to calculate the sum (3). By using (9) 
we have 

Let us first take the sum over all pure translations. 
Then, since ~ki(O I d + t) = eikl"t~k'(O I d) we are 
left with a summation over representative elements 
(Pm I rm) from every coset of the factor group G/H: 

! 1: 1: ~ki(Pm I rm)~kJPm I rm)~t,"(Pm I rm). (10) 
g (p .. lr .. ) iil 

The sum here is over all the k i , k~, and k~' in the 
stars of k, k', and k" satisfying the condition 

k i + kj - k~' == O. (11) 

and over the elements (Pm I rm) for which the 

equations 

Pmk, == k .. , 

hold. 

(12) 

The sum (10) becomes very 8imple if the summa
tion is carried out as follows: Let us take a triad 
k" k~, and k~' satisfying the condition (11) and 
sum up in (10) over the elements (Pm I rm) which 
satisfy the condition (12). Assign these elements by 

(Ps I r.), 8 = 1,2, ... ,p. (13) 

Then take an element (Pm I rm) which does not belong 
to (13) and form a new triad of k's: 

(14) 

Now we have to sum up in (10) over the elements 

8 = 1,2, '" ,po (I 5) 

because if P. satisfies the condition (12) for the 
triad (11), then Pmp,p-;.l will satisfy the condition 
(12) for the triad (14) [since the condition (12) is 
fulfilled no matter which element of the given coset 
of the factor group G/H is taken in the summation 
(10)]. According to (8) the sum over the elements 
(15) will be equal to the sum over the elements (13). 
Continuing the summation in (10) in such a way 
we will obtain y/p equal sums where p is the number 
of elements in (13). The final form of (10) will 
therefore be: 

The last formula is very simple. In order to establish 
the selection rule for an integral of the form (1) we 
take a triad k., k~, and k{' [k i from the star of 
k, k~ from the star of k', and k~' from the star of 
k"] satisfying (11) [if no such triad exists, then the 
integral (1) is zero] and sum up over those elements 
(Pm I r,n) of the factor group G/H (one element 
from every coset), which satisfy the condition (12). 
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An Orthogonality Property of Hydrogenlike Radial Functions* 
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An integral involving r-' times the product of two hydrogenlike radial functions of the same n 
and different I is shown to be zero for a number of values of s. 

T HERE is an interesting orthogonality property 
of the hydrogenlike radial functions R",(r) 

which, to the best of our knowledge, has not been 
recorded before. l Namely, for l > If, 

if 8 = 2, 3, ... ,l - I' + 1. 

The proof is quite simple when one makes use of 
the well~known generating function for the Laguerre 
polynomials.:l Proceeding in the same manner as 
when one obtains the normalizing factor N "I for 
the radial functions,2 the value of the integral is ex
pressible as N",N .. I'(n + l)!(n + I')! times the 
coefficient of U,,-I-V·-1f

-
1 in 

e e -p -H/+I'+2 d 1
.. -pu/(l-u) -P./(I-.) 

o (1 - U)21+Z (1 _ V)21'+2 e p p 

= (l + l' - 8 + 2)! (1 - U)-·-I+l'+1 

X (1 - V)-HI-I'+1(1 - uvt·-I-I'-a. 

The power of v that we seek exceeds the power of 
u by (l - 1'). It is clear on inspection that we will 
not have an infinite series of powers of v in excess of 

* Work performed under the auspices of the U. S. Atomic 
Ellergy Commission. 

1 For 8 = 2, the property has been proved by G. Feinberg, 
Phys. Rev. 112, 1637 (1958); see p. 1641. 

2 See, for example, L. Pauling and E. B. WIlson, Intro
duction to Quantum Mechanics (McGraw-Hill Book Company, 
Inc., New York, 1935), p. 451. 

those of u if 8 S 1 - l' + 1; and indeed, if the power 
of (1 - v) is thus nonnegative, the maximum 
power of v in excess of that of u is l - l' + 1 - 8. 

If this is less than l - l' (i.e., if 8 ~ 2), then the 
desired coefficient must be zero. Thus the theorem 
is proved. 

The procedure outlined above leads directly to 
the following expression for the nonzero values of 
the integral: 

K"lI' .• = (-1)1+1'(2Z/n)' 

[en - l - I)! en - If - 1)!Jl/~ 
X (n + l)! (n + l')! 

X (l + i' - 8 + 2)! 2: (-1)' [ll - 1 - 8 + 1] 
2n T l 1 n- - -r 

X [l - l: - 8 + 1] [-l - l' + 8 - 3] , 
n-1-l-r T 

where (';) is the usual binomial coefficient. For l = l' 
(Le., the mean value of r-'), some more convenient 
expressions are available.a 

These integrals occurred in connection with a 
problem concerning the hyperfine structure due to a 
nuclear quadrupole moment.· 

a S. Pasternack, Proc. Natl. Acad. Sci (U. S.) 23, 91 
(1937). InEq. (4) of that paper, the factor (2l-q)!/(2l+q+ 1)/ 
should be inverted. 

4 R. M. Sternheimer, Phys. Rev. 105, 158 (1957). 
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Green's Distributions and the Cauchy Problem for the 
Multi-Mass Klein-Gordon Operator 
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Explicit forms of the Green's functions (which are to be regarded 118 distributions in the sense of 
Schwartz) for the multi-mll8s Klein-Gordon operator in n-dimensional spaces Me presented. The 
homogeneous Green's functions GN(x) and GNI(X), defined in the usual way by independent paths of 
integration in the ko plane, are investigated in the neighborhood of the light cone. The parameter N 
indicates the total number of masses involved. The singularities on the light cone reflect the well-known 
difference between even- and odd-dimensional wave propagation. It is found that GN(x; odd n) contains 
a finite jump on the light cone as well 118 a linear combination of derivatives up to order !(n - 2N - 1) 
of 8(XI); the singular part of GNI(X; odd n) consists of a logarithmic singularity In (Ixt!) along with a 
polynomial in (X2)-1 of degree ,(n - 2N - 1). For even-dimensional spaces, the singular part of both 
Green's functions consists of a polynomial in (XI )-1I1 of degree n - 2N + 1 vanishing outside the light 
cone for GN and vanishing inside the light cone for GNI. In all cases no singularities or finite jumps 
occur when the order 2N of the operator is greater than the number n + 1 of space-time dimensions. 
The general solution of the Cauchy problem is given both for the data carrying surface t = 0 and for 
arbitrary spacelike data surfaces. 

1. INTRODUCTION 

MULTI-MASS equations have enjoyed a long 
history in field theory and often arise from 

attempts to eliminate the typical divergences oc
curring within the theory.1 For example, the regu
larized propagators of Pauli and Villars,2 obtained 
with the help of an introduction of discrete auxiliary 
masses, may easily be seen to satisfy equations of 
the form 

homogeneous equation. The case of polynomials in 
o has also been treated by Rzewuski,· who gives 
an invariant form of the general solution of the 
homogeneous equation, but leaves the corresponding 
Green's functions implicit in their Fourier repre
sentations. 

F(O)"o(x) = p(x) , (1) 

where 

The present paper is devoted to the Green's 
functions and the Cauchy problem for the multi
mass Klein-Gordon operator in multi-dimensional 
spaces. To fix the notation, we shall seek a solution 
of the Cauchy problem for the equation 

(0 + IlDA, ••• (0 + lliJAL"o(X) = 0, (3) 

F(O) = II (0 + Il~). 
; 

(2) where the d'Alembert operator is given by 

In the neighborhood of the light cone, no singularities 
or finite jump discontinuities appear in the propa
gators provided the total number of masses is at 
least three. 

Equations of the type given in (1) have been 
investigated in detail by Pais and Uhlenbeck.3 As 
these authors have shown, if F(O) is a polynomial 
in 0 with arbitrary constant coefficients, then (1) 
is an equation of hyperbolic type and a well-defined 
initial value of Cauchy problem exists for the 

I Multi-mass equations also arise naturally when one 
considers particles of higher spin; see, e. g., J. D. Harris, 
Phys. Rev. 112, 2124 (1958). 

2 W. Pauli and F. Villars, Revs. Modern Phys. 21, 434 
(1949). 

3 A. Pais and G. E. L"'hlenbeck, Phys. Rev. 79, 145 (1950). 

o = a~ - a~ - ... - a!. (4) 

The sum of the nonnegative integers AI •.. AL 
will be denoted 

N == >-1 + ... + >-L (5) 

where N = 1, 2, '" gives the total number of rest 
masses involved. The rest masses Ill' "', ilL, will 
be taken to be distinct, real and positive (although 
many of the results can be extended to complex IIp); 
if one of them must be zero, the limit p. - 0 may 
be taken after the calculations are made. Clearly, 
the wave equation is of order 2N; hence, the Cauchy 
data on the spacelike plane t = 0 consist of the time 

• J. Rzewuski, ActaPhys. Polon.12, 100(1953). 

1281 
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derivatives a~tp(x, 0) with M = 0, 1, ... , 2N - 1. 
In a previous papers we obtained the explicit 

form of the homogeneous Green's function ~(x; m; "") 
associated with the multi-dimensional, iterated 
Klein-Gordon operator (0 + Il)m. The Fourier 
representation of the Green's function was expressed, 
after some angular integrations, as a one-dimen
sional, infinite integral of the Sonine type. It was 
shown that although this integral is classically di
vergent when the order of the operator is less than 
the number of space dimensions, it can be treated 
rigorously under these conditions using the concepts 
of distribution analysis. The Green's function is then 
to be regarded as a (tempered) distribution in the 
sense of Schwartz.6 A new distribution introduced 
for the purpose of giving the improper Sonine 
integral its generalized meaning was used to investi
gate the singularities of the Green's function on the 
light cone. 

These results may be easily extended to include 
the Green's functions associated with the multi-mass 
operator (0 + IL~)~' ... (0 + ILD~L either by a 
partial fraction decomposition of the integrand of 
the Fourier representations,7 or by the method given 
in Sec. 2. Explicit expressions for the complete set 
of Green's functions for the multi-mass operator 
will be presented; this includes an expression for 
~I(X; m; fJ.) which has not been previously given in 
(I). (The two distributions ~ and ~I are linearly 
independent. ) 

The behavior of the Green's functions in the 
neighborhood of the light cone will be explicitly 
investigated in Sec. 3. Because of the well-known 
difference between wave propagation in spaces with 
an even, and spaces with an odd, number of di
mensions, the two cases must be treated separately. 
Some very interesting results are obtained. For 
odd-dimensional spaces, the Green's function 
GN(x; XI ••• XL; fJ.l .,. fJ.L), intimately related to 
~(x; m; fJ.), contains a finite linear combination of 
derivatives of the Dirac delta function o(x2

) as well 
as a finite jump discontinuity on the light cone. The 
highest derivative appearing is of order !(n-2N -1). 
The singular part of G~(x; XI •.• XL; fJ.I ••• fJ.L), 
closely connected with ~\x; m; IL), consists of a poly
nomial in (1/x2

) of degree !en - 2N - 1) along with 

6 J. J. Bowman and J. D. Harris, J. Math. Phys. 3, 396 
(1962), hereafter called (1). 

I L. Schwartz, TMQrie des distributions I, II (Hermann 
et Cie, Paris, 1950-51). 

7 Green's functions for multi-mass operators like [0"
( - ~2)")I may be calculated directly without recourse to a 
partial fraction expansion. Such operators have been in
vestigated by J. J. Bowman and J. D. Harris, J. Math. 
Phys. 3, 1291 (1962). 

a logarithmic singularity In (lx2 1). On the other hand, 
for even-dimensional spaces, the singular part of 
both Green's functions consists essentially of a 
polynomial in 1/(X2

)1/2 of degree (n - 2N + 1); 
but the polynomial vanishes outside the light cone 
for GN , and vanishes inside the light cone for G~. 
In all cases, no singularities or finite jumps appear 
when the order of the operator is greater than the 
number of space-time dimensions (i.e., 2N > n + 1). 
When this is true, the first N - (n + 3)/2 deriva
tives with respect to x2 when n is odd, or first 
N - 1 - n/2 derivatives when n is even, of both 
GN(x) and G~(x), are also continuous on the light 
cone. 

The remainder of the paper is concerned with 
obtaining the general solution of Cauchy's problem 
for the homogeneous equation (3). In this enterprise, 
the set of Green's functions G~(x; r l ••• rL; ILl •• , fJ.I) 

with 0 :::; r" :::; Xp , 7J = rl + ... + rL, and 1 :::; 
7J :::; N is particularly useful. The initial conditions 
satisfied by these functions are given in Sec. 4 and 
the general solution tp(x) is obtained in Sec. 5. 
Finally, an invariant form of the general solution 
is presented in Sec. 6 and agrees with that given by 
Rzewuski.4 There are two Appendices. 

2. THE GREEN'S FUNCTIONS 

All of the Green's functions for the multi-mass 
operator (0 + fJ.~)~' .•. (0 + fJ.i)~L may be 
obtained using the general Fourier representation 

K(x) = (2'11) -n-I 

X J dke-;b(IL~ - k2)-~ • ... (fJ.i - e)-~L. (6) 

As is well known, such an expression is not com
pletely defined until the path of integration around 
the poles of the integrand has been specified. In 
the ko plane, open paths of integration that coincide 
with the real ko axis at ± <Xl give rise to inhomo
geneous Green's functions. Closed paths which en
circle one or more of the poles lead to homogeneous 
Green's functions. 

There are only 2L independent ways of encircling 
the 2L poles of the integrand. However, by reducing 
the multiplicity of the poles, 2N - 2L more inde
pendent solutions of the homogeneous equation may 
be obtained, giving a total of 2N independent 
homogeneous Green's functions. The general in
homogeneous Green's function may be written in 
the form of a sum of the particular solution of the 
equation 

(0 + ""iiI. ... (0 + ILi/'LK(x) = 8(x) (7) 
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and of the 2N independent solutions of the homo
geneous equation with arbitrary coefficients. The 
multi-mass operator thus has a total of 2N + 1 
independent Green's functions. 
ThehomogeneousGreen'sfunctionGN(x;~1 ... ~L; 

P.I •• , P.L) is defined by choosing the path of inte
gration in the ko plane to consist of a closed curve C 
encircling all of the poles in a clockwise fashion. The 
notation GN(x; ~I ••• ~L; P.l ••• P.L) will often be 
abbreviated to GN(x) or simply GN. The inhomo
geneous Green's function GN(x; ~l " • ~L; P.I •• ' P.L), 
defined by taking the principal part of the ko inte
gration over the singularities, is related to the homo
geneous Green's function GN(x) by the formula 

can be expressed in terms of the operator 

1 ( d )X.-I 
r(~,,) - dp.! 

acting on 

i(271r" i: dke-ikrf(k) o(k2 
- p.;) fl' .(p.; - k2)-X/ 

= Ah(X; p.,,).p( - p.!) , (12) 

with Ah representing the corresponding Green's 
function for the Klein-Gordon operator 0 + p.2, and 

L 

.p( - p.!) == II' (p.~ - p.!) -~i • (13) 
j-1 

(8) FiPlally we obtain 

where e(x) = ±1 for t ~ O. A second homogeneous 
Green's function G~(x; ~l ••• ~L; P.l •.• P.L) is 
characterized by a closed path of integration Cl 

which encircles all of the poles on the positive real 
ko axis in a clockwise fashion and all of the poles 
on the negative real ko axis in a counterclockwise 
direction. Clearly the paths C1 and C are not equiva
lent, hence G~ and GN are linearly independent 
distributions. We will give explicit expressions for 
GN(x) and G~(x). 

In what follows, the notation Gh(x) will be used 
to denote any homogeneous Green's function defined 
by a path of integration e which consists of a linear 
combination of the paths C and C1

• Using the theory 
of residues and the properties of Dirac 0 functions, 
one easily obtains the identity 

rex) i dk(l - e)-~ 

= 2m i: dkf(k) o(~-I)(k2 - p.2), (9) 

where f(k) is determined by the path e; in particular, 

f(k) = {e(k) for e = C (10) 

1 for e = C1
• 

Making use of (9), and taking into account the 
contribution of all the poles in (6), one may write 
Gh(x) in the form 

Gh(x) = t i(2'lIr" fa> dke-ikzf(k) 
,,-I rex,,) -'" 

L 

X o(~p-l)ce - p.!) II' (p.~ - k2)-~/, (11) 
i-I 

where the prime on the product means that the 
factor for j = p is to be omitted. Each summand 

L ~p .p(~.-m)( _ 2) 
Gh(x) = ~ ~ (~_ )~ Ah(X; m; p.,,) 

p-l m-l :p m. 
(14) 

by applying the Leibniz rule for differentiating a 
produce of two functions and using the result 

1 ( d )m-l rem) - dp.2 Ah(X; p.) = Ah(X; m; p.), (15) 

where Ah(X; m; J.!) is the homogeneous Green's 
function for the iterated Klein-Gordon operator 
(0 + p.2)m. We note that (15) is easily obtained from 
the Fourier representation 

Ah(X; m; p.) = (271r"-1 Ie dke- ax(p.2 - e)-m, (16) 

although a rigorous justification of the identity 
follows only from considerations of distribution 
theory [cf. (I)]. 

The result expressed in (14) may alternatively 
be obtained using the general partial fraction ex
pansion (Appendix A) 

(p.~ - e)-~' ... (p.i - k2)-~L 

L >'. ..... (~.-m) ( 2) 
= L L '¥ -p.~ (p.! - e)-m (17) 

,,-1 m-l (~- m). 

for the integrand of (6). Equation (14) follows 
immediately. 

Equation (14) yields an expansion of GN(x) in 
terms of the N independent A solutions of the 
homogeneous equation (3); similarly, an expansion 
of Gir(x) in terms of the N independent .11 solutions 
is obtained. Clearly the distributions G~(x; r l •• , rL; 
J.!1 •• , J.!d and G!(x; r l ... rl; III •.. ILL) with 
o S rp S ~'" 1/ = rl + ... = rL, and 1 S 1/ S N 
are also solutions of the homogeneous equation. 
There is a large degeneracy with respect to the 
parameter 1/ and not all of these solutions are 
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linearly independent. Out of the combined set 
{G~, G!} one may choose 2N independent homo
geneous solutions; in particular, the functions 
A(x; m; p.,,) and Al(X; m; p.,,) form a complete set. 

Explicit forms of the distributions A and Al may 
be calculated (see Appendix B) using the method 
set forth in (I); the results are 

A(x; m; p.) = E(X) Re K(x; m; p.), (18) 

A\x; m; p.) = i 1m K(x; m; p.), (19) 
where 

. . _ (2_II-)U-ft)/2 (v?) .. -(fl+1l/2 
K(x, m, p.) - r(m)2" p. 

X H;;2(ft+1)/2(P.v?). (20) 

Here H~2) is the Hankel function of the second kind. s 

We stress the fact that A(x; m; p.) and Al(x; m; J.L) 
are in general to be considered as distributions. The 
A(x; m; J.L) vanish outside the light cone, whereas 
the AI(X; m; J.L) do not. 

The general homogeneous Green's function for the 
multi-mass operator (0 + J.LD~· .•. (0 + J.L;Jh 

is now obviously 
L ~. 

Gbom(x) = L L [a"oo A(x; m; J.L,,) 
p-1 m-l 

+ b .... .Al(x; mj J.Lv)] , (21) 

where a"oo and b"m are some constants which may 
involve the J.L". The general inhomogeneous Green's 
function for that operator is therefore 

Gillbom(X) = GN(x; Al ... AL; J.Ll ••• J.LL) + Gborn(x), 
(22) 

where Ghom(x) is a linear combination of the N 
functions A(x; m; J.L,,) vanishing outside, and the N 
functions Al(x; m; J.L,,) not vanishing outside the 
light cone. 

3. SINGULARITmS OF THE GREEN'S FUNCTIONS 

Using the results of the preceding section, we may 
write the distributions GN(Xj Al •.. AL; J.Ll •.• J.LL) 
and Gir(x; Al ... AL; J.Ll •.. J.LL) in ,the following 
manner: 

L 1 ( d)~'-l 
{GN, Gir} = L r(i\) d- 2 ~(-J.L!) 

,,~l " J.L" 
X {.A(x; JL,,), Al(X; JL,,)}' (23) 

where the Green's functions for the Klein-Gordon 
operator have the explicit forms 

( ) O( 2) ( )(ft-l)/2 
.A(Xjlt) = EX

2 
x ;'11" (v?)O-n)/2 

X J U-fl)/ilt #) , (24) 

(25) 

In the above, J. is the Bessel function of the first 
kind, Y. the Neumann function, K. the modified 
Bessel function of the third kind, and B(y) = 1 
for y > 0, O(y) = 0 for y < o. 

The cases of even- and odd~imensional spaces 
must be considered separately in order to investi
gate the nature of the singularities near the light 
cone. The singular part of A(xj p.) has already been 
determined in (I); for small X2 we find 

E(X) (_l)(ft-l)/2 
.A(x; J.L) ~ 2 4'11" 

X {(ft-O/2 ( -1t2 /4)-m o(m)(x2
)} 

]; r(n/2 - m + !) 
E(X) O(x2

) (_ p.2)("-1)/2 
A(x; J.L) ,....., 2 4'11" 

(n odd) 

X {(l/2)ft-l (_J.L2/4)- .. -1/2(x2)-OO-1I2} 

]; r(n/2 - m) r(! - m) 

(26) 

(n even) (27) 

where the terms that vanish for X2 -+ 0 have been 
omitted. Since O'(x2) = ~(X2), one finds that A(x; It: 
odd n) contains ~-function singularities as well as 
a finite jump discontinuity on the light cone; the 
singular part of A(x; J.L: even n) consists of a poly
nomial in (X2)-1/2 vanishing outside the light cone, 
and no finite discontinuity is present. 

The singular part of Al(X; J.L) may easily be ob
tained using well-known formulas8 of the Bessel 
functions. In the neighborhood of the light cone, 
one finds, for odd dimensional spaces 

1 't -J.L . ( 2) (ft-O/2 
.A (x; p.) ~ -;;: 4?r 

{
(ft-1l/2 ( 2/4)-00 ( d)'" } 

X ]; r(n/~~ m +!) dx2 In (IX
2

J)1/2 

i (_l)(ft-0/2 hen; J.L) 
+;;: 4?r I'(n/2 + !) 

where 

h(n; J.L) == HI + t + i + 

(n odd) 

+ 2/(n - 1)] 

- In ('Y1t/2) , 

(28) 

(29) 
8 G. N. Watson, A Treatise on the Theory of Bessel Func-

tions (Cambridge University Press, New York, 1944), 2nd ed. with In 'Y (=0.5772 ... ) representing the Euler-
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Mascheroni constant. For even-dimensional spaces 
we have 

A (x' u) '" -- -1!:.... 
I 8(-x2) (_ 2)(1/2)(n-1) 

,,..- 2 411" 

X {(l/2)n-1 (_/-I.2/4)-m-l/\x2)-m-1I2} 

]; r(n/2 - m) ret - m) 

__ Zl( ~~2) (1/2) (n-O 1 
'±1f r(n/2 +!) (n even), (30) 

where the factor of i is contained implicitly. In 
both (28) and (30), the terms that vanish for x 2 

---t ° 
have been omitted. Again, the remarkable difference 
between even- and odd-dimensional spaces is re
flected in the nature of the singularities on the light 
cone: the singular part of AI(X; W even n) consists 
of a polynomial in (X2) -1/2 vanishing inside the light 
cone, whereas AI(X; /-I.: odd n) contains logarithmic 
and multiple pole singularities. 

When one substitutes (24) and (25) into (23) to 
get explicit expressions for GN(x) and G~(x), one 
finds that sums of the form 

L 1 (_d)X.-I 
S(l) = ~ reX,,) d/-l.! (_/-I.!)l~( -1-':) (31) 

must be evaluated. Such sums are easily determined 
explicitly (when l is an integer) using the algebra 
of partial fractions (see Appendix A); in particular 
we have 

S(i) = {o for l = 0, 1, ... , N - 2; (32) 

1 for l = N - 1. 

Carrying out the indicated procedure, one easily 
finds the following explicit results: 

For both even and odd values of n, 

GN(x) = E(X) 2 i-. SeN + m - 1) 
2".(n-I)1 !:'o 4N + m- I r(N + m) 

X .pN+ (l-n)/2+*(X') , (33) 

where [ef. I, Eqs. (14) to (22)] 

f>fJ(Y) = 8(y)yfl-ljr«(3) «(3 ~ 0, -1, -2, ... ), 
(34a) 

.p-fJ(Y) = ~(fJ)(y) «(3 = 0,1,2, ... ). (34b) 

For even n, 

(
1)(n-l)/2 

Gi(x) = t -
11" 

{
8 2 '" S(m)(x2)",+(1-n)/2 

X (-X)]; 4"'I'(m + l)r«3 - n)/2 + m] 

~ S[m + (n - 1)/2](x')* } 
- !:'o 4",+(n 1)/2r(m + l)r[(n + 1)/2 + m] . (35) 

For odd n, 

1 i ( 1 )(n-o/2 
GN(x) = - -

". 411" 

{ 
'" (X2) * 

X .?:; 4*r(m + l)r«n + 1)/2 + m) 

X [S«n - 1)/2 + m{~ (1 + ... + ~) 
! ( 1) l' IX21I12] + 2 1 + ... + (n - 1) /2 + m - In 2 

- t. r~p) ( - d~;r-I (- /-I.!) (n-1)/2+m~( - /-I.;) In /-I.,,] 

(n-0/2 Seen - 1)/2 - m) (d)* 2 I12} J; 4 mr«n + 1)/2 _ m) dx 2 In Ix I • 
(36) 

where the sum 1 + + l/m is understood to be 
zero when m = 0. 

From Eq. (32) and the immediately preceding 
Eqs. (33) to (36), it easily follows that on the light 
cone x2 = 0, 

(i) There are no singularities in GN(x), and G~(x) 
contains no multiple pole singularities, when 2N > n, 
that is, when the order of the wave equation is 
greater than the number of space dimensions. How
ever, for odd nand 2N = n + 1, a finite jump 
discontinuity occurs in GN(x) and a logarithmic 
singularity occurs in G~(x). 

(ii) Both GN(x) and G~(x) are continuous together 
with their first N - (n + 3)/2 derivatives if n 
is odd, or with their first N - 1 - n/2 derivatives 
if n is even, provided that 2N > n + 1, that is 
provided the order of the wave equation is greater 
than the number of space-time dimensions. 

We observe that the inequality 2N > n + 1 
determines the minimum number of masses required 
for the regularization of the n-dimensional propa
gators according to the Pauli-Villars2 procedure. 

When 2N ~ n, one may write, by means of (A6), 
expressions which exhibit the singularities of GN(x) 
and G~(x) explicitly. For odd-dimensional spaces 
we find 
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It is clear that GN(x; odd n) contains a finite jump 
8(x2

) on the light cone in addition to a linear com
bination of derivatives up to order len - 2N - 1) 
of t5(x2

), whereas the singular part of G).(x; odd n) 
consists of a logarithmic singularity In (lx2\) along 
with a polynomial in (X2)-1 of degree!(n - 2N - 1). 

For spaces with an even number of dimensions, 
one obtains 

Gj;iIlSl(X) = f(X)~(X2) (L.)'''-0/2 

{
<n-Nl/2 S(n/2 - m _ 1)(x2)-m-1/2 } 

X .f.; 4 ... - 1I2r(n/2 - m)rC! - m) , 

D( 2) ( 1 ) <,,-0/2 
G~<·ill"'(X) = -;x 4'l1" 

{
(n-Nl/2 S(n/2 _ m _ 1)(x2)-m-1/2 } 

X .f.; 4'" I!2 r (n/2 - m)r(! - m) . 

(39) 

(40) 

Here the singular part of the two Green's functions 
consists of a polynomial in (x2) -1/2 of degree n -
2N + 1, with Gj;ingl (x; even n) vanishing outside, 
and G1<oing

l (x; even n) vanishing inside, the light 
cone. 

In the last four equations, the sum S(l) is given by 

X (-JLDt •• ,. (-JLi)tL, (41) 

where q = 0, 1, ... and (X,,)t. = X"(X,, + 1) ... 
(X" + f" - 1). 

Finally, it is clear that Gbom(x) in (21) is regular 
on the light cone, provided 

t r: C"m (_~)m-\_JL2)1 = 0 
,,-1 .. -1 rem) dp." " 

(l = 0, 1, ... ,II) (42) 

where C" ... = a"", + b" .. and 

II = {!(n - I)} for {odd n}. (43) 

!n - 1 even n 

In the case of a multi-mass operator with distinct 
rest masses (X" == 1), the singularities and finite 
jumps cancel if 

L 

:E C,,(JL!)' = 0 (l = 0,1, ... , II). (44) ,,-1 
These equations represent the multi-dimensional 
analog of the well-known regularization conditions 
of Pauli and Villars,2 guaranteeing the absence of 
singUlarities on the light cone. 

If one considers (42) with the condition II = N - 2 

instead of the condition (43), the homogeneous 
system (42) contains N - 1 equations in the N 
parameters C"",. From (31) and (32), after applying 
Leibniz's rule, it follows that 

1 (d )X.-.. 2 
C" .. = const X r(Xp _ m + 1) - dJL! <1>( - JLp) 

(45) 

is a solution of this system. Since the solution of 
such a system is determined within a multiplicative 
constant, it is the only solution, apart from the 
trivial one 

C" .. = o. (46) 

Substituting these solutions in (21) and remembering 
(15) and (23), it is easily seen that the regulariza
tion condition (42) with II = N - 2 is satisfied only 
for the homogeneous functions 

(47) 

and 
L X. 

Gbom = :E 2: d" .. [i1(x; m; JL,,) - i1\x; m; p.,,)], (48) 
p=l m-l 

where A, B, and the d"", are arbitrary constants. 
Since, as one can now see, Eq. (42) with II = N - 2 
is equivalent to the vanishing on the light cone of 
the first N - (n + 3)/2 (if n is odd) or N - n/2 - 1 
(if n is even) derivatives of Gbom with respect to x2

, 

it follows that no Green's function vanishing outside 
the light cone can be more regular than GN , and 
that GN is determined uniquely within a multipli
cative constant by these regularity and causality 
conditions. 

4. INITIAL CONDITIONS OF THE GREEN'S FUNCTIONS 

It will become evident that the set of homo
geneous Green's functions Gix; r 1 •.. rL; JL1 .. , P.L) 

with 0 ~ r" ~ X"' .,., = r1 + .. ' + rL, and 1 ~ 
1] ~ N is particularly useful for constructing the 
solution of the Cauchy problem. For this reason, 
we shall briefly investigate the behavior of these 
functions and their time derivatives at t = O. The 
initial behavior of the G~ functions will not be 
considered, aside from the obvious statement that 
for m = 0, 1, 2, .. , the equations 

a~"+lG!(X, 0) = 0, 

a~"'Gix, 0) = 0 

(49) 

(50) 

follow immediately from (B1) and (B2). Because 
of (50), we need only calculate the time derivatives 
of odd order for G.(x). 
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There are of course many ways of performing (56), does indeed represent the solution of Cauchy's 
the calculation, the shortest of which seems to be problem. Consider 
the following. We use a result given in (I), 

O~"'+1 A(x, OJ IJ.) = (\72 
- l)m Ii(x) , 

which, when substituted into (23), gives 

where 

(51) 

bp = \7 2 
- IJ.! and il>(bp ) = II' (b" - b;)-).;. 

The sum is evaluated explicitly in Appendix A; 
using those results, we obtain the initial conditions 

O~GN(X, 0) 

r 0 for 

~ o(x) for m = 2N - 1; 

l 0 

m = 0,1, ... ,2N - 2; 

for all even m; 

(53) 

along with 

:E (X,)r, ... (XLhk 
f,+"'+fL-m 51!"" 5L! 

X (\72 
- IJ.~l' " .. (\72 

- IJ.i)r L Ii ex) , (54) 

where (Xp)r~ = X"(X,, + 1) ... (Xp + 5" - 1) is the 
Pochhammer symbol. Of course similar initial condi
tions are obtained for the G.(x; rl '" TL; 1-41 •• , IJ.L)' 

5. GENERAL SOLUTION OF THE CAUCHY PROBLEM 

The solution of 

(0 + IJ.~)},' .,. (0 + IJ.i)},Lip(X) = 0 

taking specified values for ip(x), Ooip(x), 
O~N-lip(X) on the spacelike plane t = 0, may be 
written in the form 

X (a~ - a~) a~2" ip(X') , (55) 

where the arrows indicate the direction in which the 
differentiation is to be carried out. For each m = 0, 
1, ... , N - 1, the N - m constants A ... ~ are to 
be determined from the N - m equations 

N 

2: Am. a;,+2i-lGix, 0) = 00 ; o (x) , 
,-".+1 

with j = 0, 1, '" , N - m - 1. 
We first show that (55), subject to the conditions 

M N 

[ !>2M ( )] J. dx' '" '" Am. !>2
0
·+2(M-m)-1 

Vo ip X '-0 = £..J £..J "' V 
1'-1-0 ",-0 'J-m+l 

(57) 

where the upper limit to the sum over M is deter
mined by (53). Clearly the integral in (55) corre
sponding to a~ makes no contribution because of 
(50). Hence, summing over 11 by virtue of (56), one 
obtains the desired result 

O~Mip(X, 0) = J dx' ~ IimM Ii(x - x') O~2mip(x', 0). 

(58) 

An exactly analogous proof may be used for 
a~M+lip(x, 0); thus (55) is the required solution. 

The problem now is to find the Am, explicitly. 
Evidently the existence of a solution to (56) depends 
on what G, functions are employed; one must choose 
an independent set. In the present case, we can 
guarantee that a solution exists by using all of the 
G,(x; Tl '" rL; IJ.1 '" IJ.L). Because of (54), the 
conditions (56) may be reduced to algebraic equa
tions for the A",~; namely, 

(59) 

where the sum over 11 = Tl + .,. + TL is under
stood as a sum over !:Ill the T" consistent with 
o ~ Tp ~ Ap and m + 1 ~ Tl + ... + rL ~ N. 
Since we expect Am, = A .... h .. , TL; XI .•• XL) 
to be independent of the rest masses, we shall seek 
a solution of 

N 

2: A"'kl)r.··· (ThL = lio; (60) 
,,-m+l 

with j = 51 + '" + 5L' Such a solution will, 
of course, be a solution of (59). 

We assert that 

satisfies (60) in addition to satisfying the require
ments 0 ~ Tp ~ X". To prove this, consider the 
function 

(62) 
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Differentiating with respect to x, one finds 
. N 

(fJ"'jfJx"')F(I, b) = -1 + E (_),-"'-1 
'I-m+l 

cp(x) = f dx' t (>'1) ... (>'L)G~ 
I' -0 ,-I TI T L 

x (x - x'; TI, ... ,TL; P.I, ... ,P.L) 

(63) 
X (a~ - a~)(a~2 - a~2) ,-I cp(x'). (69) 

All possible G, solutions are here involved, although 
where the -1 comes from the TI + ... + rL = 0 only the N functions 6.(x; m; p.p) are ultimately 
term. Differentiating with respect to b, one may present. Upon introducing the differential operator 
write 

X ('1 ~ 1)(~:) ... e:)(TI)r, ... (rLhL' (64) 

where we have used the multinomial differentiation 
rule 

(65) 

which follows by induction from Leibniz's rule. 
A direct calculation from the second equality in 

(62) gives 

(66) 

for m = 0, 1, ... ,N - 1 and j = 0, 1, ... ,N -
m - 1; therefore, 

However, because of the symmetry of the summand, 
we clearly must have 

t (_)'-00-1('1 - 1)(>'1) ... 
,-.. +1 m r l 

so our assertion is proved. II 
Returning to the original solution (55) of the 

Cauchy problem, using (61) and summing over m, 
we find 

t A rigorous proof showing that (61) satisfies Eq. (59) 
directly is not hard to construct, but seems longer than this 
demonstration. 

(70) 

we can write the Cauchy solution in the neat form 

cp(x) = f.-o dx'GN(x - x')X'cp(x'). (71) 

We note that X may be written 

(a~ - a~)X 

= (ao - ao{n (0 + p.! + a~ - a~)x. 

-n (0 + p.!)x. J. (72) 

6. INVARIANT FORM OF THE SOLUTION 

All of the Green's functions we have discussed 
are invariant within the proper Lorentz group, so 
that an invariant form of the field cp(x) is easily 
obtained. As is well known, the derivative of 
6. (x; p.) normal to an arbitrary spacelike surface 
q(x) with normal n~(x) is given bylo 

n~(x) fJ~ 6.(x; p.) = o .. (x) (x2 < 0) (73) 

where o .. (x) is the invariant surface a function with 
the properties 

a .. (x) = 0 (x <t q), 

J d!1(x) o .. (x) = 1. 

(74) 

The corresponding behavior of GN(x) on spacelike 
surfaces may be obtained as follows. 

Because 6. satisfies the Klein-Gordon equation, 
it follows that 

0" 6.(x j p.) = (-l)'" 6.(x j p.) ; (75) 

consequently, for x2 < 0 we have 

n/l(x) fJ~ 0'" GN(x) = SCm) Oo(x), (76) ----
10 See, e. g., J. Rzewuski, Field Theory (Hafner Publishing 

Company, New York, 1958). 
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where SCm) is the sum given by (31). Utilizing the 
explicit expression for the sum, one immediately 
finds, for spacelike x, 

nll(x) all 0" GN(x) 

F(O)cp(x) = 0 

has a complete solution in the form 

cp(x) = J dup(x') L\N(X - x')X~(x'), 

(84) 

(85) 

{ 
0 for m = 0, I, ... ,N - 2; 

= 8~(x) for m = N - 1, 
(77) where 

and 

np(x) all oN+m-1GN(x) 

1: (Al)r,' .. (AL)rL ( 2/, 
r,+".rL-m til··· tLI -1-'1 

X (-l-'i)tL 8~(x). (78) 

Furthermore, 
(79) 

follows directly from the fact that GN is an odd 
invariant function vanishing outside the light cone. 

One may now write an invariant analog of (55) 
with constants A",~ that satisfy the same algebraic 
equations. The result gives the general solution in 
the invariant form ll 

(80) 

where 

ap) t (AI) .. , (AL) [] _ 0)"-1 
~-1 r1 rL 

L 

X II (0 + I-'!»)..'-'p. (81) 
p=l 

Equation (72) is replaced by 

(0 - O)XIl = (ap - a{j) 

X [g (0 + 1-';/. - ft (0 + 1-';/.]. (82) 

Using (82), the integral in (80) is easily seen to be 
independent of the data carrying surface u(x); we 
have 

8cp(x)/8u = aGGN(x - X')X~(X') 

= GN(x - x')[II (0' + I-'!»)..' 

- II (0' + I-'!»)..·]cp(x') = 0, (83) 

since both GN(x) and cp(x) are solutions of the homo
geneous equation. 

It is well to remark that these results can be 
extended to the case of complex 1-'1" In general, for 
a polynomial F(z) with real or complex coefficients, 
the homogeneous equation 

11 Compare with reference 4. 

(86) 

and 

a{j)[F(o) - F(D)]. (87) 

APPENDIX A. PARTIAL FRACTIONS 

Partial fraction decompositions for quotients of 
polynomials have long been known (although the 
explicit formulas are difficult to find in textbooks12

). 

We shall list here the pertinent results for quotients 
of the form z· II (z - b;)-)../ assuming the b; to 
be distinct and nonzero, and setting N == Al + 
... + AL' 

When q = 0, I, ... N - 1 the following expansion 
holds: 

z· L 1 (d ))...-1 
----= L--
Il

L ,. 1'-1 reAp) db p 

(z - bJ ' 
i=1 

where the second equality is obtained using Leibniz's 
rule. The factor for j = p is to be left out of the 
primed products. The important result 

L 1 (d ))..1'-1[ L ] ?; reAp) db
p 

(bp ) I II;' (bp - b;)-)..I = 0 

(l = 1, 2, ... ,N - 2) (A2) 

is obtained immediately upon setting z 0 and 
q=l+1. 

The partial fraction theorem also gives 

z·v+. L 1 (d )'P-1 
L = E .(z) + ~ r(A) db II (z - bill p-I P p 

i-I 

[
(bp)N+. if' (bp - b;)-)..f] 

X ';1 _ b
p 

,(A3) 

11 A complete treatment of partial fractions is given by J. 
A. Serret, COUT8 d'algebre BUprMeure (Gauthier-Villars, Paris, 
1885), Tome I. 
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where q = 0, 1, , and E.(z) is a polynomial of 
degree q. An explicit form for E.(z) is easily obtained 
as follows: Since 

(A4) 

expand the denominator using the binomial theorem 
to find 

where w = +(k2 + l)I/2. Since 

(l/w)(sin wt + i cos wt) = (1I't/2w)1/2 H~~~("'t), 

we introduce (for t > 0) the function 

K(x; p.) == (211')-" L"'", dke;k'{~:r2Hm("'t), 
and note that 

~(x; p.) = E(X) Re K(x; p.), 

~l(X; p.) = i 1m K(x; p.). 

Integrating (B4) over the angles, one obtains 

(B3) 

(B4) 

(B5) 

(B6) 

x (bI)r .... (bL)rLz·-r.-···-rL. 

In particular, then 

(A5) . 1 ( 1 )("-1)/2. 
K(x' p.) = - -, 2 211' 

_ L _1 (~)A'_I[ (bp/'+o-I ] 
E.(O) - :E r(~) db L 

p-I p p II' (b" - bj)AI 
i=1 

:E (~I)r.··· (~L)rL (bI)r. '" (bL)rL 
r.+···+fL-. tI!'" tL! 

= .!. ~ [(1 - b 1")-A, ... (1 - b 1")-AL] (A6) q! dr. U L) r-o, 

where the third equality is obtained using the 
multinomial differentiation rule (65). The important 
formula 

is obtained because Eo(O) = 1. 

APPENDIX B. CALCULATION OF.i AND.iI 

We first calculate the Green's functions for the 
Klein-Gordon operator following the procedure of 
(I). Upon performing the ko integration over the 
paths C and Ct

, one finds the well-known integral 
representations 

~( . ) = E(X) f'" dkeik.",(sin w Itl) 
x, p. (2'/1)" _'" w (Bl) 

~1( . ) = _z_· f'" dke·1I:·",(coswt) 
x, p. (211')" _'" w' (B2) 

where the integral over k is an integral of the Sonine
Gegenbauer type [Bateman,t3 Sec. 7.14.2 (4S)]; 
thus, finally 

1 ( P. )(,,-0/2 _ r2 O-n)/2 (2) _ r2 
K(x;p.) = 2 211' (vx) H O- n )/2(P.VX). 

CBS) 

In (BS), (X2
)I/2 is defined as -i( _X2

)I/2 when x2 < 0 
and Bateman's Sec. 7.2.2 (16) has also been used. 

Just as in (I), the Sonine-Gergenbauer integral 
must be defined as a distribution for general orders 
of the Bessel functions in the integrand. Equation 
(20) now follows by an application of (15) and the 
well-known formula 

(-d/z dz)m{z->H;2\z)} = z->-mH;2)m(z). (B9) 
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The results of a previous paper on homogeneous Green's 
functions for a multi-dimensional iterated Klein-Gordon 
operator (0 + p.2)1 are extended to include homogeneous 
Green's functions associated with the operator [0" (- 1'2)",]' 
in multi-dimensional spaces. The Fourier representation of 
the Green's functions may be expressed, after some angular 
integrations, as a one-dimensional infinite integral which does 
not in general converge. Using the concepts of distribution 
analysis, it is shown how this improper integral can be 
evaluated directly to get explicit expressions for the Green's 
functions. The Green's functions themselves must then be 
interpreted as distributions in the sense of Schwartz. Several 
distributions instrumental in this treatment are introduced 
and .their properties studied. Explicit expressions for the 
singularities of the Green's functions on the light cone are 

1. INTRODUCTION 

I N a previous papei we obtained the explicit form 
of the homogeneous Green's function associated 

with a multi-dimensional iterated Klein-Gordon 
operator (0 + Il) I. Starting from its Fourier 
representation, the Green's function was expressed 
as a one-dimensional, infinite integral of the Sonine 
type. It was shown that although this integral is 
classically divergent when the order of the operator 
is less than the number of space dimensions, it can 
be treated rigorously under these conditions using 
the concepts of distribution analysis. The Green's 
function is then to be regarded as a (tempered) 
distribution in the sense of Schwartz.2 A new dis
tribution introduced for the purpose of giving the 
improper Sonine integral its generalized meaning 
was used to investigate the singularities of the 
Green's function on the light cone. 

In the present paper we extend these results to 
include Green's functions for equations of a more 
general nature. It is interesting to consider equa
tions of the type 

(1) 

where m and l are positive integers, and 0 is the 
multi-dimensional d'Alembert operator 

* Present address: University of Michigan, Ann Arbor, 
Michigan. 

1 J. J. Bowman and J. D. Harris, J. Math. Phys. 3, 396 
(1962), hereafter referred to as (I). 

S L. Schwartz, Theorie des distributions, I, II (Hermann & 
Cie., Paris, 1950-51). 

presented. The well-known difference between even- and 
odd-dimensional spaces is reflected in the nature of these 
singularities. The singularities appearing for odd-dimensional 
spaces consist of a finite linear combination of derivatives of 
the Dirac delta function 8(8'), where s is the space-time 
distance. The highest derivative appearing is of order ~(n-
2m-l) with n giving the number of space dimensions. The 
singular part for even-dimensional spaces consists of a 
polynomial in l/s of degree n - 2ml + 1. No singularities 
appear when the order of the operator is greater than the 
number of space dimensions. Finally, a complete set of 
homogeneous A-function solutions is given along with their 
initial conditions at zero time. All of these functions would be 
needed in obtaining the general solution to the Cauchy 
problem for the operator considered. 

(2) 

Clearly the Fourier representation of the Green's 
function can be given in the form 

As is well-known, the path of integration in the ko 
plane determines which Green's functions (homo
geneous or inhomogeneous) are being represented. 

The integrand in (3) contains 2n poles of order 
l for (_k2

) ... = (-,i)"'. The location of these poles 
in the ko plane is given by 

ko = [k4 + p.4 + 2k2
p.2 cos (2ptr/m)r/4eHor +"./2) , (4) 

tan~p = sin (2ptr/m)/(W/l) + cos (2ptr/m)] , (5) 

where p = 0, 1, ... , m - 1 and q = 0, 1. The 
singularities in the ko plane are thus confined within 
an annular ring of outside radius (k2 + p.2)112 and 
inside radius (k2 

- p.2)1/2. The retarded and ad
vanced Green's functions may be defined in the 
usual way. The retarded solution is obtained by 
taking the path of the ko integration above the 
real axis such that all the singularities in the ko 
plane lie below this path. The advanced solution 
corresponds to a path below the real axis with all 
the singularities situated above the path. The homo
geneous Green's function .6".I ... (X) is then given by 

A..1, .. (X) = .1~~L,{x) - a:~; ... (x), (6) 

1291 
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and the inhomogeneous Green's function ~".I,,,, is 
related to .:1".1 .... by the formula 

the singular part of the Green's function consists 
of a finite sum of derivatives of the Dirac delta 
function oCi) where 8 is the space-time distance 

.:1".I, .. (x) = 2e(t) ~".I.",(x) 

with e(t) = ±1 for t ~ O. 

(7) given by 8
2 = t2 

- r2. The highest derivative ap
pearing is of order !(n - 2ml - 1). For even
dimensional spaces, however, the singular part is a 
polynomial in 1/8 of degree n - 2ml + 1. In both 
cases, no singularities appear on the light cone when 

A direct calculation from (3) shows that .:1".1 ... 
may be written in the form [cf. (I)] 

e(t) 
.:1".I.",(x, t) = (2'11')"/2 

the order of the differential equation is greater than 
the number of space dimensions. 

A complete set of .:1-function solutions is required 

X (" dk J,,/2-1(kr) k"/2G (k Itl) J
o 

r,,/2-1 1,,,.,, (8) in the general solution of the Cauchy initial value 
problem for Eq. (1). Because the integrand in (3) 
contains 2m poles of order l, there are ml inde
pendent .:1-function solutions to Eq. (1). An explicit 
expression for the complete set of these solutions is 
presented in Sec. 3 along with the initial condi
tions satisfied then at time t = O. 

where J .(z) is the Bessel function of the first kind 
and GI.fII(k, t) is given by 

1 
G1.",(k, t) = 2m 

x J.~:~'" dze"[(l + k2)7n - (-Jl)"'r'. (9) 

Here c > 0 is a real number such that all the singu
larities of the integrand in (9) are on the left of 
the straight line from c - i co to c + i co • 

Clearly Gl,m is a solution of the differential 
equation 

[(d2 + k~'" - (- ~2)"']IG(t) = oCt), (10) 

where d == d/dt. 
In general, convergence difficulties are encountered 

when one attempts to evaluate the integral in (8) 
to get explicit expressions for the Green's functions 
and it soon becomes clear that the Green's function 
itself must be given some generalized interpretation. 
Such an interpretation is of course available in 
Schwartz's theory of distributions.2 

Following the program of (I) we introduce (cf. 
Sec. 2) several distributions instrumental in the 
treatment of Green's functions. An integral formula 
is developed which enables the explicit evaluation 
of integrals in the form of (8). These results are 
then applied (cf. Sec. 3) in obtaining directly the 
homogeneous Green's function .:1 ... ,.", for Eq. (1). 

Explicit expressions for the singularities of the 
Green's function .:1".1,,,, on the light cone are given 
in Sec. 3. Here special attention must be paid to 
the cases of even n and odd n due to the well-known 
difference between even- and odd-dimensional spaces 
in the solutions of hyperbolic differential equations. 
This remarkable difference is clearly reflected in the 
nature of the singUlarities on the light cone. 

For spaces with an odd number of dimensions, 

2. SPECIAL DISTRIBUTIONS 

Before introducing specific distributions it may 
be well to summarize briefly the basic definitions2 

involved in distribution analysis and recapitulate 
some results presented in (I). 

Distributions are defined as linear operators 
which map a space of functions into a space of 
numbers. Different spaces of functions generate dif
ferent distribution spaces. Following Schwartz we 
denote various spaces as follows: 

(i) The spaces un) consists of all (C-) functions 
on R" with compact support. 

(ii) The space of distributions (:0') is the dual 
of (:0). 

(iii) The space (S) is the space of all (C·) functions 
on R" that "decay rapidly at infinity." 

(iv) The space of tempered distributions (S') is 
the dual of (S). 

Every distribution X can be represented by a con
tinuous linear functional X{4>\ on (:0). In the space 
of distributions, every distribution has derivatives 
of all orders which are themselves distributions, 
such derivatives being defined by3 

CD) 
With every locally summable point function ~(x) 
we may associate the distribution X{4>} by the 
formula 

X{4>\ = L: ~(x)4>(x) dx; (12) 

3 From now on we consider only distribution defined for 
the real axis. In Eq. (9) we put </>(")(x) = d"</>/dx". 
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thus, "ordinary" functions appear as distributions, 
and the epaces above satisfy the relation (:0) C 
(s) c (S') c (:0'). For nonsummable functions 
it is often convenient to define "generalized func
tions" in the manner of Eq. (12), where now, the 
symbolic or generalized function ~(x) has no mean
ing independent of the defining formula (12). 

In the space of tempered distributions (S') the 
Fourier transformation is defined, and the Fourier 
transformation of each tempered distribution is 
again a tempered distribution.2 All Green's func
tions obtained from (3) are to be regarded as tem
pered distributions. The Laplace transformation is 
defined for distributions whose support is bounded 
on the left.~ The support of a distribution X is 
bounded on the left if X{tf>} = 0 for all functions 
ct>E(:O) whose support is contained in some half
line (- ex>, c). The space of all distributions with 
support bounded on the left is denoted by (:oD. 

In (I) extensive use was made of the distribution 
(;/l defined for the entire finite (3 plane by the 
following equations: 

1 1'" (;/l{ct>} = r({3) 0 x ll
-

1tf>(X) dx (Re (3 > 0), (13) 

(;/l{ct>} == (-)"(;/l+"{ct>l,,l} (Re (3 + n > 0), (14) 

where n is a positive integer or zero. Note that (;/1 
is a member of both (:oD and (S'). 

When (3 = 0, the Dirac distribution, 

Now it is evident that a host of new distributions 
can be obtained by taking various linear combina
tions of the .0 distributions. At the same time a 
wide variety of "special functions" occurring in 
classical analysis can be given extended interpreta
tions when they are regarded as generalized func
tions. In (I), for example, we introduced the dis
tribution 

o ( . X) - ~ X·"'8+0+1 
/l a, - ~ rea + q + 1) , (21) 

which may also be written in the form 

O/l(a; X) 

= IF2(1; a + 1, (3 + 1; XX).oIl+I/r(a + 1), (22) 

where F is a hypergeometric series. This distri
bution is defined for all complex values of the param
eters a, {J, and A by requiring, in accordance with 
(14) that 

where the nonnegative integer n is such that 
Re (3 + n + 1 > o. 

Other properties of 0 are to be found in our 
previous paper; here we need to introduce a more 
general distribution a of which 0 is a special case: 

a Ca· X) = f X"(r)."'8+ •• +... (24) 
/l...., .-0 q! rea + IIr + IIq) 

(;o{ct>} = &{ct>} = ct>(0) 

is obtained. Derivatives of (;/1 are given by 

(15) To insure that (14) is applicable Re II is taken to be 
positive, although negative values for which. the 
series terminates may be admitted. By means of 

(16) the formula 

and this formula may be extended to define fractional 
derivatives. In terms of the Dirac distribution we 
have 

(a) ..... = m ..... IT (a + n) , 
,,-0 m " 

where m is a positive integer, we obtain 

(25) 

(17) a/l ...... (a; X) 

and the familiar property 

(18) 

The product x"(;/l with n = 0, 1, 2, ... is defined by 

(19) 

where 

({3)" = (3({3 + 1) ... ({3 + n - 1), (f3)0 = 1. (20) 

4 J. Lavoine, Calcul 8ymbolique (Centre National de Ill. 
Recherche Scientifique, Paris, 1959). 

(
a +a+m-l = IF2m rj r + m ' ... , r m 

{3 (J + m - 1 Ax"') r+- ... r+ '-
m" m' m2

'" 

X "'8+ ... 
rea + mr) , (26) 

giving the connection with a hypergeometric 
function. 

The differential equations satisfied by a distri
bution often determine its real personality; in the 



                                                                                                                                    

1294 J. J. BOWMAN AND J. D. HARRIS 

case of .8 these equations are indeed interesting . .8.8-.... -k.l ... (-mp - kj X") = X .... .8.8-k.l .... (-kj X ... ) 
Derivatives are given by (39) 

Introducing the operator 

db = x(d2/dx2
) + (1 + a - P)(d/dx) , 

we obtain 

as an easy consequence of (24) and 

Furthermore, we have 

(a~b" - X)'.8" .•. ",(aj X) = .8".H ... (aj X), 

which leads to the equations 

and 

(27) 

(28) 

(29) 

(30) 

(31) 

a/lb"(a/lb'" - X)'.8t1+".I. ... (a + ni X) = ij.8/r(a). (33) 

A homogeneous equation for .8t1. 1,,,, (a; X) may easily 
be obtained from (32) using 

[x(d/dx) + 1 - J3]ijtl = O. (34) 

Due to the poles of the gamma functions in (32) 
and (33) these equations are homogeneous when
ever a is zero or a negative integer. That there are 
just ml independent .8 solutions to the homogeneous 
equation 

(a/lb" - A"')'''' == 0 (35) 

may be seen in the following manner: 
Consider the solutions of 

(a/lb'" - X"')'" = o. (36) 

It can be shown that a11.8 solutions of this equation 
are of the form 

can be derived when p and k are positive integers. 
Equations (38) and (39) indicate that there are 
only m independent .8 solutions of (36); they may 
be taken in the form 

(40) 

with k = 0, I, '" , m - 1. Therefore, by virtue 
of the formula 

(d"/dX .. ).8t1 .•.• (aj X) = (r)".8.8.H" .• (aj X), (41) 

we see that only ml independent .8 solutions of (35) 
can be constructed. Clearly these solutions may be 
given in the form 

'" = .8/l-a-k ...... ( -kj X ... ) (42) 

where k = 0, 1, ... , m - 1 and p = 1,2, ... , l. 
It should be mentioned that our interest in the 

operator a"b is motivated by the fact that it may be 
associated with the spherically symmetric d' Alem
bert operator 

d2 n d o = - + - - (i = t2 
- r~ (43) 

d82 
8 as 

for n space dimensions. Transformed to a new inde
pendent variable x = 8

2/4 the d'Alembert operator 
becomes 

d2 n+1d o = x dx2 + -2- dx ' (44) 

which is a special case of (28). As we shall see, the 
.8 distributions are closely related to the Green's 
functions for Eq. (1). 

The distribution obtained from Eq. (24) by 
omitting the gamma function in the denominator, 
that is, the distribution 

(45) 

'" = .8.8-a-k.l ... (-kj X") 
(37) no longer satisfies (29) and (31), but satisfies Eq. 

(27) and 
where n is a positive integer such that m = na 
for some a = I, 2, 3, .. , , and k is a nonnegative 
integer. Not all of these solutions are independent. 
From (24) one may easily obtain the expansion 

"'/n--l 

.8t1.I.fI(aj X") = 2: X ... -...-".8/l-.... 1. ... (a - nqj X ... ) (38) 
.-0 

provided min is a positive integer. Further, the 
relation 

(d'" - X)'.8~ ...... (jX) = .8.8 .• -I. .. (;X) (46) 

where d == d/dx. Equation (32) is similarly re
placed by 

(d'" - X)'.8/l.I .... (jX) = ij.8, (47) 

which is always inhomogeneous. 
The connection with a hypergeometric series is 

given by 
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.8.8.r.",(;X) = IF ... (T; T + ! ' ... , 
fJ + m - 1 Xx"') 

T + m ; m'" ().8+mr, (48) 

an equation similar to (26). Using the Laplace 
transform' of ('.8, 

(49) 

the standpoint of distribution theory even though 
the classical condition for convergence requires 
Re fJ > Re p. > -1. It would be nice if this result 
could be extended to permit an explicit evaluation 
of the integral occurring in Eq. (8). 

AB a matter of fact, various extensions are pos
sible. From (21) and (24) we find 

(57) 

the Laplace transform of .8.s.r .• (; X) is easily ob- which, when applied to Eq. (51) with p. = 1, indi
tained; it is cates that 2.s. r ••• 1(0; X, w) is a series of 0 distribu

tions. Making use of (56) inside the summation gives 
.c/.8".r .• (jX)} = z-.8(z· - X)-r. (50) 

Further generalizations are available in the lo'" du12,.{Oj x - a: u)~".r .•. l(Oj X - u, w: a) 
distributions 

= ~.8-"-I.r".I(O; X, w: x). (58) 
(51) In a similar manner using 

and (59) 

~ W·(T). we obtain 
2.8,r .•. ,.(; X, w) = ~ -qt .8/1 .• r+o.,,.(; X), (52) 

where Re JI and R:-: ar~ taken as positive. The l'" du12,.(O; x - a: U)~O,r ••• 2(;X - u, w: 2al/~ 
following differential equations are satisfied 

(60) 
(53) 

Equation (60) becomes, when X = 0, 
[( .. ,Ilb" - X)'" - w]/2.8.,.", ... (a; X, w) = ().s/I'(a) , 

[(d" - X)" - w]/2/1., ....... (jX, w) = ()/I' 

A glance at the last equation indicates 

(54) 

that lo'" du12,.(O; x - a: U)~O.r •• ,2(j- u, w: 2al/~ 
2/1,1, .. ,,,(; X, w) will be of use in obtaining GI,,,,(k, t), 
the solution of Eq. (10). The Laplace transform is 
given by 

(55) 

At this point all the necessary distributions for 
calculating the Green's function ~.I.'" associated 
with Eq. (1) have been developed. 

As we have seen, a direct calculation of the Green's 
function from its Fourier representation leads in 
general to an improper integral [cf. (8)] which must 
be interpreted in some generalized sense. In (I) a 
similar calculation led to the improper Sonine inte
gral which was treated in terms of generalized 
functions with the result 

l'" du12,.(O; x - a: u)12,8(O; X - u: a) 

= 12/1_,._1(0; X: x), (56) 

where a is a positive real number. In this formula 
the complex values of fJ and p. are unrestricted from 

(61) 

This is the result we are after; using it the Green's 
function ~.I.'" may be calculated explicitly. 

3. DISCUSSION OF THE GREEN'S FUNCTION 

Consider now the homogeneous Green's function 
~",I, ... (x) associated with the equation 

(62) 

In order to apply (8) we must of course know the 
solution G, .... (k, t) of 

[(~:2 + k2
)'" - (-p.~"'TG(t) = act) (63) 

corresponding to (9). Evidently it follows from (54) 
and (55) that 

GI,,,,(k, t) = ~O.I,"'.2[; - k2
, (-Jl)"': t]. (64) 

The Bessel function in the integrand of (9) can 
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be expressed in terms of the 0 function by means 
of the formula 1 

0/1(0; - },: x) = h(x)(X/},){J/2J{J(2>..1/2X1/2) (65) 

where hex) = 1 for x > 0 and hex) = 0 for x < o. 
Upon changing the variable of integration to u = k2 

the Green's function may be written in the form 

E(l) 1'" 2 .1" I.m(X, t) = 2"11",,/2 0 duO"/2-1(O; - r /4: u) 

X 20.1 .... 2[; -u, (_I-4~m: t], (66) 

and in view of (61) we have immediately 

In terms of familiar hypergeometric functions, 
Eq. (67) becomes 

22m I-111"(n-l)/2 r (ml)r{I ; n + ml) .1".I ... (X) 

= h(i\s2ml-n-l F (l' 1 1 + 1. .. . 
J 1 2m " m ' 

m-l 1-n l+-- 1+-- ... 
m' 2m' , 

1 + 1 - n + m - 1 . (iJ.'S)2") (68) 
2m m' 2m 

by virtue of Eq. (26). However the series expansion 
of (67) is often more useful. Recalling (24) one 
easily obtains 

_ E(t) '" (-It·<D • 
.1".I. ... (x) - 2"11"(,,-1)/2 f.; q! r(ml + mq) 

'" (-//4)m.<p/". 
X ~ q! r(ml + mq)r«1 - n)/2 + ml + mq) , 

(69) 

from which it is obvious that there are no singu
larities when 2ml > n (remembering that l, m, n, 
are integers). That is, singularities do not appear 
on the light cone when the order of the differential 
equation is greater than the number of space di
mensions. 

When 2ml ~ n the Green's function may be 
written as the sum of a singular part and a regular 
part. The singular part strikingly exemplifies the 
well-known difference between even- and odd-di
mensional spaces. The regular part represents a 

finite jump discontinuity across the light cone and 
is of similar nature in the two cases. 

The singular part is readily split off using the 
series form (69) of the Green's function. For odd
dimensional spaces the singularities appearing are 

(sin,) E(l)( - i)",,,-ml 
.1".1 ... = 22c>m-11l""m+cr(l) 

X E (-/ /4)-m·r(a - q) 8("·+C)(l) (70) .-0 (a - 1 - q)! r(ma - mq) , 

where n = 2am + 2c + 1 with a, c integers such 
that a ~ land 0 ~ c ~ m - 1. Thus for odd n 
the singular part consists of a finite linear combina
tion of derivatives of the Dirac delta function 8(s2), 
the highest derivative appearing being of order 
!(n - 2ml - 1). 

Spaces with an even number of dimensions have 
the following singularities in the Green's function: 

(sing) t(l)( _1-42)"',,-"1 
.1 ... 1 .... = 22" .. -11l""m+c-l/2r (l) 

X ,,-I (-1-4 2/4r m·r(a - ci)h(s~(1/s)2"O+2c+l 

~ (a - l- q)! r(ma - mq)r(l - c - mq) , 
(71) 

where n = 2am + 2c. Here we have a polynomial 
in l/s of degree n - 2ml + 1. 

Various recurrence relations are satisfied by the 
Green's function .1,..I .... (X) and may be obtained 
using Eq. (67) along with the properties of the .8 
distribution. We have 

.1 .. + 27>.1. ... = (1/77»(d/ds2
)" .1 ... 1 .... (72) 

as a consequence of (27), and recalling (41) we obtain 

.1".I+7>.m = « -) ""r(l)/r(l + p»(d/dI-42 .. y .1 ... 1 .... (73) 

Furthermore, the "method of descent" u~d by 
Hadamard' finds expression in [cf. Appendix in (I)] 

.1"-7>.I.m = i: .1".l.m dX1 ... dx7>' (74) 

As a result of these recurrence formulas all the 
Green's functions .1,..1 .... are derivable from .10 •1 .... 

So far we have only 1 independent A-function 
solutions to Eq. (1); they are .1 ... 7> • .,(x) with p = 1, 
2, ... , l. However the integrand of the Fourier 
integral representing the Green's function contains 
2m poles of order 1 in the ko plane corresponding to 
the 2m roots of (_k2)m = (-1-42

)". One expects 
then ml independent .1-function solutions. In fact 

5 J. Hadamard, Lectures on Cauchy's Problem in Linear 
Partial Differential Equations (Yale University Press, New 
Haven, Connecticut, 1923). 



                                                                                                                                    

1297 

we can write them down immediately in view of o~ D".vCx, 0) = 0 for j = 0, 1, ... , (2p - 2) 
(42); they are 

= <lex) for j = 2p - 1 
A~." .... (X) = 0 for all even j, (78) 

= 2"1I:~~~1)/2 .8(1-")/2-b.".,,,[ - b; (-Ii)"': 8 2/4J (75) where 00 = o/at. Therefore the initial conditions 
satisfied by A!:" .... are 

where p = 1, 2, ... , land b = 0, 1, ... , (m - 1). 
Series expansions and recurrence formulas for 
A!." ... similar to those for An • I .... may easily be 
derived. 

a~ A!." .... (x, 0) 

= 0 for j = 0,1, ... , (2mp - 2b - 2) 

= <lex) for j = 2mp - 2b - 1 

= 0 for all even j. (79) 
The initial conditions satisfied by the Green's 

functions A! ...... at t = 0 may be obtained as follows. 
Consider the A-function solutions of the equation 
O"~ = 0; they can be given in the form' 

These initial conditions indicate that all ml solutions 
(75) are needed in the general solution of the Cauchy 

(76) initial value problem7 for Eq. (1). D".,,(x) = E(t),po_")/2+,,(82/4)/2"1!'(,.-l)/2r(p), 

ACKNOWLEDGMENT where the notation D means lim,,_o A. The series 
expansion of (75) may thus be written8 

This work was supported in part by U. S. Public 
(77) Health Service Training Grant 2G-174 to Dart

mouth Medical School. 
b _ 0> (-li)"'·(p). 

An." .... -.L: q' D" .... "+,,,.-b. .-0 . 
Now the initial conditions satisfied by D ... " are' 

• Equation (77) along with 0 1 D ... , ... D ... ,,-i may be 
used to show that ~b".J>.m is indeed a solution of (62). 

7 See (I) where the complete solution of the Cauch~ 
problem for the iterated Klein-Gordon operator is calculated 
m detail. The general solution for an arbitrary polynomial 
in 0 appears in J. J. Bowman and J. D. Harris, J. Math. 
Phys. 3, 1281 (1962), preceding article. 
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Input Admittance of Infinitely Long Dipole Antennas Driven from Coaxial Lines 
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For an infinitely long dipole antenna driven from a coaxial line, the reflection coefficient and hence 
the apparent terminal admittance are determined approximately when the radii of the coaxial line are 
small compared with the wavelength. This result is useful because the differences of admittances for 
antennas with identical geometries near the driving point are leBB sensitive to the driving condition 
and hence can be found approximately by many existing theories. 

I. INTRODUCTION 

BECAUSE of the geometrical complexity of a 
linear antenna driven from either a coaxial 

line or a two-wire transmission line, a number of 
antenna problems have been studied on the basis 
of a delta-function generator, sometimes called a 
slice generator. Such an idealization is adequate 
for many purposes, such as the determination of 
the field pattern or the current distribution not 
close to the generator, but causes difficulty in con
nection with the input admittance because of a 
singularity in the current distribution at the driving 
point.1 Various methods have been suggested to deal 
with this singularity, such as subtracting out a 
logarithmic term. It is the purpose of this paper 
to consider an alternative procedure, which is more 
natural and hence more satisfactory so far as the 
author is concerned. Only the ease of the antenna 
driven from a coaxial line is to be studied. 

When a delta-function generator is postulated 
and when the transverse dimensions of the antenna 
are small, the abovementioned singularity in the 
current distribution is a local effect in the sense 
that it is independent of the logitudinal dimensions 
such as the length of the antenna. In other words, 
differences of current distributions on antennas with 
the same transverse geometry are bounded in the 
vicinity of the driving point. Accordingly, the ap
proximate determination of the differences of input 
admittances is comparatively less troublesome. For 
the purpose of obtaining finite input admittances 
that can be directly compared with experimental 
results, it is sufficient to study just one canonical 
problem once the differences of admittances are 
known. This paper is concerned exclusively with 
the study of such a canonical case. 

The canonical case chosen is that of an infinite 
* Alfred P. Sloan Foundation Fellow. Work also supported 

in part by Grant G-9721 from the National Science Founda
tion. 

1 T. T. Wu and R. W. P. King, J. Appl. Phys. 30, 76 (1959). 
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FIG. 1. Geometry of the 
problem. 

straight antenna driven from a coaxial line. This 
case is by far the simplest choice, and the geometry 
is shown in Fig. 1. Cylindrical coordinates (r, 8, z) 
are to be used. 

This case has been studied by Papadopoulos. 2 

However, the approximation in his work is such 
that it can give at best a qualitative understanding 
of the situation. The present paper seeks to provide 
a procedure to obtain quantitatively useful results 
in the sense that they are to be comparable in ac
curacy with available experimental measurements. 
For this purpose all terms of the order kb, which 
were neglected by Papadopoulos, must be retained 
since they can be estimated to be numerically quite 
significant in many cases. In the present solution the 
input admittance, which is a function of the two 
dimensionless constants ka and bja, is found to 
have a surprisingly simple form as given by (29). 

2. FORMULATION OF THE PROBLEM IN TERMS OF 
AN INTEGRAL EQUATION 

Let the incident current on the inner conductor 
of the coaxial line be 

(1) 

Since rotational symmetry obtains, let E.(r, z), 

2 V. M. Papadopoulos, Quart. Appl. Math. 17,423 (1960). 

1298 
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E.(r, z), and H,(r, z) be the nonvanishing com~ 
ponents of the electromagnetic field due to (1). 
In terms of Er(r, 8), the magnetic field He is given by 

H,(r, z) = -2ikt~1 t r' dr'Er(r' , O)Go(r, r', z) (2a) 

for z ~ 0 and r ~ a, and 

H,(r, z) = (1r1')-1 cos kz + 2ikt~1 
6 

X i r' dr'Er(r', O)G,(r, r', z) (2b) 

for z ~ 0 and a ~ r ~ b, provided that the antenna, 
the coaxial line, and the ground plane are all assumed 
to be perfectly conducting. In (2), to is the charac~ 
teristic impedance of free space, while the Fourier 
transforms of the Green's functions Go and G. are 
given by 

Go(r, r', t) = L: dzGo(r, r', z)e- ir• 

= ti1l"[H~1)(~)rlH~1)(~» 

X [H~l)(~)Jl(~<) - Jo(~a)H~1)(~4<)]' (3a) 
and 

- ) fa> J..rt ( , ) -'r. Gc(r,r', t = _II) =u,r,r ,ze 

= !i1l"[Jo(~a)H~1)(~b) - H~l)(~a)Jo(~b)rl 

X [H~l)(~b)Jl(~r» - Jo(~b)H~l)(~»] 

X [Hcil)(~a)Jl(~<) - Jo(~)H~l)(~r)<], (3b) 

where r> and r < are, respectively, the larger one 
and the smaller one of rand r', and 

~ = W - f)1I2 (4) 

is defined by ~ = k for t = 0 and by the branch 
cuts shown in Fig. 2. The continuity of H, for 
z = 0 and a ~ r ~ b gives the following equation 
for E r : 

i6 

r' dr'Er(r', O)(Go(r, r', 0) + G.(r, r'O)] 

= ito(21r1'k)-1. 

This is the desired integral equation. 
It follows from (3b) that, as ~ - 0, 

G,(r, r', t) '" -(frr,)-l[ln (b/a)r1
• 

Accordingly, as z _ - 00 , 

G,(r, r', z) '" !i(rr'k)-l[ln (b/a)r1e-ih
, 

and hence 

rH,(r, z) '" 11"-1 COS kz - t~le-ih[ln (b/a)r1 

X f dr'E.(r', 0), 

(5) 

(6) 

(7) 

(8) 

t-PlCI'I8 

Right 
branch 

FIG. 2. The r plane and 
the contour Co. 

-k 

Left • 
branch 
cut 

cut 

k Co 

provided that the coaxial line does not support 
any higher mode. The reflection coefficient is thus 

r = 1 - 211"t~1[ln (b/a)r 1 t dr'Er(r' , 0), (9) 

and the apparent terminal admittance for this in
finitely long antenna, defined by 

Yaa> = 211"[to In (b/a)r1(1 + r)/(1 - r), 

is given by 

Yaa> = -211"[to In (b/a)r1 + {t dr'Er(r' , 0) Jl. 
(10) 

3. APPROXIMATIONS FOR SMALL b 

From here on the assumption is made that 

kb « 1. 

In order to make use of (11), note first :that 

i6 

G.(r, a, t) dr = -(fa)-l, 

and similarly 

(11) 

(12) 

t Go(r, a, t) dr = -(fa)-l[1 - H~1)(~b)/H~l)(~)]. 
(13) 

On the basis of (12) and (13), define 

G(r, r'i k) = Go(r, r', 0) + G,(r, r', 0), (14) 

Gd(r,r'ik) = G(r,r'jk) - T/(rr'), (15) 

and 

Gir, r') = Gir, r'; 0), (16) 

where 

T= - [211" In (b/a)r 1 

X f ~-2 dt[2 - Hcil)(~b)/H~I)(~)], (17) 
c. 

with the contour ofjntegration Co~own in Fig. 2. 
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When (11) holds, Gd(r, r'; k) differs only slightly 
from Gd(r, r'). Thus (5) becomes approximately 

b 

r i r' dr'B'.(r', O)Gir, r') 

= iro(21rk)-1 - T { dr'Er(r', 0). (18) 

If fer) is defined as the solution of the integral 
equation 

b 

r 1. r' dr'f(r')Gir, r') = 1, (19) 

and 

A = a f drf(r) , (20) 

then 

and 

Yo., = 21rr~1 { -2ik(aA -1 + T) - [In (b/a)]-I). (22) 

Note that A is a function of b/a only. 
It only remains to write down the kernel G d of 

the integral equation explicitly. This is provided by 

G ir, r') = 1r -1 10'" d~ [Ko(ra)II (rr <) + 10 (ra)K1 (rr <)] 

X [Kl(rr» _ K o(rb)I1(rr» + I oU:b)Kl(rr»] 
Ko(ra) Io(ra)Ko(rb) - Ko(ra)Io(rb) 

- (r2rr,)-1[2 - Ko(rb)/Ko(ra)]/[ln (b/a)]}. (23) 

4. APPROXIMATE EVALUATION OF Yo", 

Equation (17) may be further simplified under 
the assumption (11). First of all, it can be written 
alternatively as 

T = [1r In (b/a)r 1 L~k ",-1 d",(k2 + ",2)-112 

X [2 - Ko(",b)/Ko(7]a)], (24) 

where the path of integration is taken in the fourth 
quadrant. When 7] is small, the last factor in the 
integrand is given approximately by 

2 - Ko(7]b)/Ko(7]a) '" 1 + ",aK1(",a) In (b/a)/Ko(7]a). 
(25) 

Thus, by (24), T may be approximately split into 
two parts as follows: 

2ikT + [In (b/a)r 1 = -Bl(ka) + kaiB2(b/a), (26) 

where 

Bl (ka) = 2ika1r -1{L~k d7](k2 + rl) -112 

X [1 - K 1(7]a)/Ko(7]a)] + In (ka) - i~}, (27) 

and 

X 1~ {In (2D) + [a In (b/aW
I LD1a 

'1-
2 

d7] 

X [1 - ~:~~:~ - 7]a(ln~) ~:~~:~]}. (28) 

Finally, the substitution of (26) into (22) gives 

Yo., = 21rr;1 fB1(ka) - kai[2A -l(b/a) + B2(b/a)]}. 

(29) 

This is the required answer. 
Note that the B1 term does not depend on b 

and hence may be interpreted as the intrinsic admit
tance of the antenna, while the terms B2 and A-I 
are independent of k and may be interpreted to
gether as a capacitive end correction. As seen from 
the first term on the right-hand side of (28), this 
splitting is arbitrary up to a constant in the ca
pacitance. 

S. CONCLUSIONS 

When the radius of the outer conductor of the 
coaxial line is small compared with the wave
length, as expressed by (11), the apparent terminal 
admittance of an infinitely long dipole antenna 
driven from a coaxial line has been found quite 
accurately. It is, however, not trivial to obtain 
numerical results, since the solution of an integral 
equation (19) is needed. It is perhaps worth re
emphasizing that the admittance has a rather simple 
form (29) as a function of ka and b/a. 

Many approximate theories may be expected to 
give differences of admittances more accurately 
than the admittances themselves because of the 
complexity of the current distribution near the 
driving point. Accordingly, when a coaxial line is 
used, the present result supplements these theories. 
More precisely, it is here proposed that the apparent 
admittance Yo of a dipole antenna with length h» b 
may be found approximately as follows when driven 
from a coaxial line. Express Yo in the form 

Yo = (Yo - Yo.,) + Ya.,. (30) 

The term Yo., is given by the present theory, while 
the difference Yo - Yo., is found on the basis of a 
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delta-function generator, as mentioned in the intro
duction. This procedure, in particular. takes ac
count properly of the effects of the size of the coaxial 
line. In order to use this procedure, the approxi
mate theory used to evaluate the difference Ya - Yam 
must be valid for the infinitely long dipole. In other 
words, a theory of the long dipole antenna is needed. 
Furthermore, for comparison with experimental 
results, this theory of the long dipole antenna must 
also be reasonably accurate even when the antenna 
is not excessively long. A theory with precisely this 
purpose in mind has been given previously.3 

3 T. T. Wu, J. Math. Phys. 2, 550 (1961). 

This point of view is also useful in some cases 
more complicated than that of the dipole antenna. 
For example, it is applicable to the case of the thin 
circular loop antenna provided that the radius of 
the loop is large compared with b. If (11) is replaced 
by Ikbl « 1, this entire calculation is also valid for 
dissipative media, where k is complex. 

Procedures very similar to the present one can 
easily be found for various other problems,suGh as 
a discontinuity in radius. . 
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The current distribution on a thin circular loop transmitting antenna driven by a delta-function 
generator is determined approximately by Fourier series expansion. A difficulty encountered in 
previous analysis is shown to be due to an inadequate approximation. 

I. INTRODUCTION 

As early as 1897, Pocklington1 studied the excita
tion of a thin loop antenna by a plane wave. 

Using methods very similar to that of Pocklington, 
Hallen' and later Storer8 considered the case of the 
driven antenna. All these authors used Fourier 
series expansion, as appropriate for the geometry 
under consideration, and the latter authors found a 
difficulty in this approach. Their difficulty takes 
the form of the appearance of either a singularity 
or a very large term in the Fourier series expansion 
when the index n is close to a certain large number 
determined by the geometry. Hallen then concluded 
that the series is divergent and attributed this 
divergence to the approximation of a "one-di
mensional" equation, whereas Storer avoided the 

• Alfred P. Sloan Foundation Fellow. Work also supported 
in part by National Science Foundation Grant 9721. 

1 H. C. Pocklington, Proc. Cambridge Phil. Soc. 9, 324 
(1897). 

2 E. Hallen, Nova Acta Regiae Soc. Sci. Upsaliensis 2, 
No.4 (1938). 

3 J. E. Storer, Trans. A. I. E. E. 75, Part I, 606 (1956). 

contribution from this large term by first replacing 
the Fourier series by the corresponding integral 
and then evaluating the integral in the sense of the 
Cauchy principle value. This procedure of Storer 
seems at best to be of doubtful validitY. More 
recently, a similar difficulty has been found to appear 
also in the case of dipole antennas.u In this case, 
however, it is clear from the derivation that the 
trouble has nothing to do with the originally posed 
problem, but instead, is a consequence of the 
approximations used. It is the purpose of this paper 
to point out that this is also the case with the thin 
loop antenna, and a procedure is proposed that 
avoids this difficulty by invoking approximations 
that are valid over larger ranges of the parameters. 
It may be added that the difficulty under considera
tion does not have anything to do with the so-called 
"gap problem." 

4 T. T. Wu, J. Math. Phys. 2, 550 (1961). 
6 T. T. Wu, J. Research Nat!. Bur. Standards (to be 

published). 
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delta-function generator, as mentioned in the intro
duction. This procedure, in particular. takes ac
count properly of the effects of the size of the coaxial 
line. In order to use this procedure, the approxi
mate theory used to evaluate the difference Ya - Yam 
must be valid for the infinitely long dipole. In other 
words, a theory of the long dipole antenna is needed. 
Furthermore, for comparison with experimental 
results, this theory of the long dipole antenna must 
also be reasonably accurate even when the antenna 
is not excessively long. A theory with precisely this 
purpose in mind has been given previously.3 

3 T. T. Wu, J. Math. Phys. 2, 550 (1961). 

This point of view is also useful in some cases 
more complicated than that of the dipole antenna. 
For example, it is applicable to the case of the thin 
circular loop antenna provided that the radius of 
the loop is large compared with b. If (11) is replaced 
by Ikbl « 1, this entire calculation is also valid for 
dissipative media, where k is complex. 

Procedures very similar to the present one can 
easily be found for various other problems,suGh as 
a discontinuity in radius. . 
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The current distribution on a thin circular loop transmitting antenna driven by a delta-function 
generator is determined approximately by Fourier series expansion. A difficulty encountered in 
previous analysis is shown to be due to an inadequate approximation. 

I. INTRODUCTION 

As early as 1897, Pocklington1 studied the excita
tion of a thin loop antenna by a plane wave. 

Using methods very similar to that of Pocklington, 
Hallen' and later Storer8 considered the case of the 
driven antenna. All these authors used Fourier 
series expansion, as appropriate for the geometry 
under consideration, and the latter authors found a 
difficulty in this approach. Their difficulty takes 
the form of the appearance of either a singularity 
or a very large term in the Fourier series expansion 
when the index n is close to a certain large number 
determined by the geometry. Hallen then concluded 
that the series is divergent and attributed this 
divergence to the approximation of a "one-di
mensional" equation, whereas Storer avoided the 

• Alfred P. Sloan Foundation Fellow. Work also supported 
in part by National Science Foundation Grant 9721. 

1 H. C. Pocklington, Proc. Cambridge Phil. Soc. 9, 324 
(1897). 

2 E. Hallen, Nova Acta Regiae Soc. Sci. Upsaliensis 2, 
No.4 (1938). 

3 J. E. Storer, Trans. A. I. E. E. 75, Part I, 606 (1956). 

contribution from this large term by first replacing 
the Fourier series by the corresponding integral 
and then evaluating the integral in the sense of the 
Cauchy principle value. This procedure of Storer 
seems at best to be of doubtful validitY. More 
recently, a similar difficulty has been found to appear 
also in the case of dipole antennas.u In this case, 
however, it is clear from the derivation that the 
trouble has nothing to do with the originally posed 
problem, but instead, is a consequence of the 
approximations used. It is the purpose of this paper 
to point out that this is also the case with the thin 
loop antenna, and a procedure is proposed that 
avoids this difficulty by invoking approximations 
that are valid over larger ranges of the parameters. 
It may be added that the difficulty under considera
tion does not have anything to do with the so-called 
"gap problem." 

4 T. T. Wu, J. Math. Phys. 2, 550 (1961). 
6 T. T. Wu, J. Research Nat!. Bur. Standards (to be 

published). 
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Delta - function 
generator of 
voltage V 

FIG. 1. Geometry of the problem. 

2. FORMULATION OF THE PROBLEM 

In Fig. 1 is shown the geometry and the coordi
nate system for a loop antenna driven by a delta
function generator. If the loop is assumed to be 
perfectly conducting, then there are two com
ponents for the surface current density, namely, 
J.(q" (J) and J,(q" (J). By setting the tangential 
components of the electric field to zero in the 
surface of the loop, the following integral equations 
are obtained for J. and J o: 

(ajaq,) J dcp' d(J'(47rR)-VkR {a(ajaq,')J.W, (J') 

+ (aja(J')[(b + a cos (J')J,W, (J')] I 
+ k2a(b + a cos (J) 

and 

X J dcp' d(J'(47rR)-VkR(b + a cos (J') 

X [J.W, (J') cos (q, - q,') 

- J ,W, (J') sin (4) - q,') sin 8'] 

= ikr;l V 5(q,) (la) 

(aja(J) J dcp' d(J'(47rR)-VkR {a(ajaq,')J.cq,', (J') 

+ (aja(J')[(b + a cos (J')J,(4>', (J')]) 

+ k2a2 J dcp' d(J'(47rR)-le,kR(b + a cos (J') 

X {J.W, (J') sin (q, - 4>') sin (J + JoW, (J') 

X [cos (q, - q,') sin 8 sin (J' + cos (J cos (J']} 

= O. (lb) 

Here, all integrals are from ~ 'II" to'll", R is the 

Euclidean distance between the points (q" a, 8) 
and (q,', a, (J'), ro is the characteristic impedance 
of free space, and V is the voltage supplied by the 
delta-function generator. 

As a first approximation to these rather compli
cated integral equations, the so-called one-dimen
sional equation is obtained under the following 
circumstances 

a« b, and ka« 1 (2a) 

so that 

(2b) 

and 

J,(q" (J) ,......, O. (2c) 

Equation (lb) is omitted altogether and (Ia) is 
approximated by 

(ajaq,) J dq,'K(q, - q,')(ajfJq,')J(q,') 

+ k2b2 J dcp'K(q, - q,') cos (q, - 4>')J(4)') 

= 4rikr;1 V 5(q,) , 

where 

X exp {ik[(2b sin !q,)2 + (2a sin t(Jy]1/2}. 

(3) 

(4) 

Equation (3) is to be studied by Fourier series 
expansion. 

The integral equation used previously differs from 
the present one in that K(q,) is replaced by 

K(q,) = [(2b sin !q,)2 + a2r1l2 

X exp {ik[(2b sin !q,)2 + a2]1I2}. (4') 

This difference has the following consequence. When 
Fourier series expansion is used, as given by (5) 
and (6) below, it is easily verified that the series 
for J(q,) converges for q, ;c o. If K had been used, 
the corresponding Fourier coefficients K.. decreases 
exponentially for large n, and consequently the 
series for J(q,) diverges everywhere. In the work of 
Hallen and Storer, this violent divergence is avoided 
by an approximation on the coefficients Ie,. which 
does not decrease exponentially for large n. Equation 
(4) is quite similar to the expression of the kernel 
in the case of the dipole antenna.6 

e T. T. Wu and R. W. P. King, J. Appl. Phys. 30, 76 (1959). 
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3. FOURIER SERIES EXPANSION 

Let 

'" 
1(1/» = L I .. ei

"', 
,,--co 

and 

then 

(15) 

When (to) holds, (15) is approximated by 

(5) bN .. (A) = -2'Y - 2ln [(_k2 + n2/b2)1/2A/2], (16) 

where 'Y is Euler's constant, numerically about 
0.57722. At least for n not too large, the difference 
M .. (A) and N .. (A) is approximately independent 

(6) of A so that it may be computed for small values 
of A. Thus it follows from (15) and a comparison 
of (11) with (16) that 

I .. = ikV1I"- lt;1[!eb
2

(K .. +l + K .. -l) - n
2
K .. fl. (7) bM,,(A) = 2Ko[(-k2 + n2/b')1/2A] 

Thus, the major task here is to evaluate the coeffi- + In (1 - k2b2/n2) + 2C .. 
cients K". 2kb 

If - 11" i dx[D2"(X) - iJ2,,(x)], (17) 

where 

(8) 
,,-1 

C .. = In (4n) + 'Y - 2 L (2m + 1)-1. (18) 
.. -0 

Mn(A) = {'" dq,e-i"'[(2b sin tl/»2 + A2r1l2 

X exp {ik[(2bsin!I/»2 + A2]1I2} 

for n ;::: 0, then 

K .. = 11"-2 fa dA(4a2 - A')-1/2M\n\(A). 

Since A is small, (17) may be slightly simplified to 

(9) bM,,(A) = 2Ko{nA/b) + 2C" 

Thus, it is sufficient to consider the case 0 < A « b. 
If 

A« bin, (IO) 

then the analysis of Oseen7 and Storer3 applies with 
the result 

.. -1 

bM,,(A) = 2 In (8b/ A) - 4 L (2m + 1)-1 
.. -0 

(11) 

(19) 

It is worth noting that both C .. and the integral 
on the right-hand side of (19) are of the order of 
magnitude of n-2 as n --+ co. Thus (19) does not 
hold if n » bl A. Fortunately, this does not cause 
any trouble. Finally the substitution of (13) and 
(19) into (9) gives 

Ko = (1I"br1{ln (8b/a) - p i m 
dX[Do(x) - iJo(X)]} 

approximately, where D is the Lommel-Weber and 
(20a) 

function { 
K" = K_" = (1I"b)-1 Ko(na/b)Io(na/b) 

Dm(x) = 11"-1 {' sin (x sin fJ - mfJ) dfJ. (12) 

In particular, (11) implies that 

1
2kb 

bMo(A) = 2 In (8b/ A) - 11" 0 dx[Do(x) - iJo(x)]. 

On the other hand, the integral 

N,,(A) = L: dq,e-i"'[b21/>2 + A2r1l2 

X exp {ik[b21/>2 + A2r1l2} 

(13) 

(14) 

(20b) 

for n ;::: 1. This is the desired answer. The current 
distribution may be found from (5), (7), and (20). 

The difficulty of Hallen and Storer is simply not 
encountered, since for large n, 

1;1 = -(ikV)-111"ton2
K" (21) 

approximately, and this is never very small. 

4. THE INPUT ADMITTANCE 

may be readily computed to be given by Similar to the known case of the dipole antenna,e 
7 C. W. Oseen, Arkiv Mat. Astron. Fys. 9, No. 12 (1913). l~o 1(1/» does not exist. Let Y., be the admittance 
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FIG. 2. The r plane and the 
Co contour Co. 

of an infinite dipole antenna of radius a, then the 
difference between Y = J(O)IV and Yoo is finite. 
More specifically 

Y - Yoo = ~~ ( V-I ,:too J"e;~ + (2lll')kt~1 

X f dte;r.b(r2 
- k~-I 

c. 

X {Jo[a(k2 - r~l/2JHrill[a(k2 - r~1/2]} -I), (22) 

where the contour of integration Co is shown in 
Fig. 2. Equation (22) may be simplified to 

Y - Y .. = lim ik1l'-lr~1 
N ...... 

X CtN [!eb2
(Kn +1 + K,,_I) - n2KnJ-\ 

- 2i f dr(r2 - k2)-1 
C.(N) 

X {Jo[a(k2 - r2)1I2]Hci ll [aW - f)1/2]1-I), (23) 

where Co(N) is the part of Co with Irl < N + !. 
5. DISCUSSIONS 

Within the framework of one-dimensional ap
proximation, the current distribution on a thin 
circular loop transmitting antenna driven by a 
delta-function generator has been determined com
pletely. Within the same approximation, the re
ceiving antenna can be treated in a very similar 
manner without any new difficulty. 

One-dimensional approximations, however, are 
never entirely satisfactory. Although difficult, it is 
highly desirable to study the complete Eqs. (Ia) 
and (I b) directly, expanding the various quantities 
in the small parameters alb and ka. This remains 
to be done. 
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